in

Effect of mammalian mesopredator exclusion on vertebrate scavenging communities

  • 1.

    DeVault, T. L., Rhodes, O. E. Jr. & Shivik, J. A. Scavenging by vertebrates: behavioral, ecological, and evolutionary perspectives on an important energy transfer pathway in terrestrial ecosystems. Oikos 102, 225–234 (2003).

    • Article
    • Google Scholar
  • 2.

    Benbow, M. E. et al. Necrobiome framework for bridging decomposition ecology of autotrophically and heterotrophically derived organic matter. Ecological Monographs 89, https://doi.org/10.1002/ecm.1331 (2019).

    • Article
    • Google Scholar
  • 3.

    Barton, P. S., Cunningham, S. A., Lindenmayer, D. B. & Manning, A. D. The role of carrion in maintaining biodiversity and ecological processes in terrestrial ecosystems. Oecologia 171, 761–772, https://doi.org/10.1007/s00442-012-2460-3 (2013).

  • 4.

    Beasley, J. C., Olson, Z. H. & DeVault, T. L. Ecological Role of Vertebrate Scavengers. Carrion Ecology, Evolution, and Their Applications, 107 (2015).

  • 5.

    Wilson, E. E. & Wolkovich, E. M. Scavenging: how carnivores and carrion structure communities. Trends Ecol. Evol. 26, 129–135, https://doi.org/10.1016/j.tree.2010.12.011 (2011).

  • 6.

    Moleon, M., Sanchez-Zapata, J. A., Selva, N., Donazar, J. A. & Owen-Smith, N. Inter-specific interactions linking predation and scavenging in terrestrial vertebrate assemblages. Biol. Rev. Camb. Philos. Soc. 89, 1042–1054, https://doi.org/10.1111/brv.12097 (2014).

  • 7.

    Mateo-Tomas, P. et al. From regional to global patterns in vertebrate scavenger communities subsidized by big game hunting. Diversity Distrib. 21, 913–924, https://doi.org/10.1111/ddi.12330 (2015).

    • Article
    • Google Scholar
  • 8.

    Sebastián‐González, E. et al. Scavenging in the Anthropocene: human impact drives vertebrate scavenger species richness at a global scale. Global change biology (2019).

  • 9.

    DeVault, T. L., Brisbin, I. L. Jr. & Rhodes, O. E. Jr. Factors influencing the acquisition of rodent carrion by vertebrate scavengers and decomposers. Can. J. Zool. 82, 502–509 (2004).

    • Article
    • Google Scholar
  • 10.

    Olson, Z. H., Beasley, J. C., DeVault, T. L. & Rhodes, O. E. Scavenger community response to the removal of a dominant scavenger. Oikos 121, 77–84, https://doi.org/10.1111/j.1600-0706.2011.19771.x (2012).

    • Article
    • Google Scholar
  • 11.

    Moleón, M., Sánchez-Zapata, J. A., Sebastián-González, E. & Owen-Smith, N. Carcass size shapes the structure and functioning of an African scavenging assemblage. Oikos 124, 1391–1403, https://doi.org/10.1111/oik.02222 (2015).

    • Article
    • Google Scholar
  • 12.

    Turner, K. L., Abernethy, E. F., Conner, L. M., Olin, E. & Beasley, J. C. Abiotic and biotic factors modulate carrion fate and vertebrate scavenging communities. Ecol. 98, 2413–2424, https://doi.org/10.1002/ecy.1930 (2017).

    • Article
    • Google Scholar
  • 13.

    Schlichting, P. E., Love, C. N., Webster, S. C. & Beasley, J. C. Efficiency and composition of vertebrate scavengers at the land-water interface in the Chernobyl Exclusion Zone. Food Webs 18, e00107 (2019).

    • Article
    • Google Scholar
  • 14.

    Wilmers, C. C., Crabtree, R. L., Smith, D. W., Murphy, K. M. & Getz, W. M. Trophic facilitation by introduced top predators: grey wolf subsidies to scavengers in Yellowstone National Park. J. Anim. Ecol. 72, 909–916, https://doi.org/10.1046/j.1365-2656.2003.00766.x (2003).

    • Article
    • Google Scholar
  • 15.

    Wilmers, C. C., Stahler, D. R., Crabtree, R. L., Smith, D. W. & Getz, W. M. Resource dispersion and consumer dominance: scavenging at wolf- and hunter-killed carcasses in Greater Yellowstone, USA. Ecol. Lett. 6, 996–1003, https://doi.org/10.1046/j.1461-0248.2003.00522.x (2003).

    • Article
    • Google Scholar
  • 16.

    Wilmers, C. C. & Getz, W. M. Gray wolves as climate change buffers in Yellowstone. PLoS Biol. 3, e92, https://doi.org/10.1371/journal.pbio.0030092 (2005).

  • 17.

    Wilmers, C. C. & Post, E. Predicting the influence of wolf-provided carrion on scavenger community dynamics under climate change scenarios. Glob. Change Biol. 12, 403–409, https://doi.org/10.1111/j.1365-2486.2005.01094.x (2006).

  • 18.

    Ogada, D. L., Keesing, F. & Virani, M. Z. Dropping dead: causes and consequences of vulture population declines worldwide. Ann. N. Y. Acad. Sci. 1249, 57–71, https://doi.org/10.1111/j.1749-6632.2011.06293.x (2012).

  • 19.

    Hill, J. E., DeVault, T. L., Beasley, J. C., Rhodes, O. E. & Belant, J. L. Effects of vulture exclusion on carrion consumption by facultative scavengers. Ecol. Evolution 8, 2518–2526, https://doi.org/10.1002/ece3.3840 (2018).

    • Article
    • Google Scholar
  • 20.

    Cunningham, C. X. et al. Top carnivore decline has cascading effects on scavengers and carrion persistence. Proceedings of the Royal Society B-Biological Sciences 285, https://doi.org/10.1098/rspb.2018.1582 (2018).

    • Article
    • Google Scholar
  • 21.

    Beasley, J. C., Olson, Z. H. & Devault, T. L. Carrion cycling in food webs: comparisons among terrestrial and marine ecosystems. Oikos 121, 1021–1026, https://doi.org/10.1111/j.1600-0706.2012.20353.x (2012).

    • Article
    • Google Scholar
  • 22.

    Read, J. L. & Wilson, D. Scavengers and detritivores of kangaroo harvest offcuts in arid Australia. Wildl. Res. 31, 51–56, https://doi.org/10.1071/wr02051 (2004).

    • Article
    • Google Scholar
  • 23.

    Ogada, D. L., Torchin, M. E., Kinnaird, M. F. & Ezenwa, V. O. Effects of vulture declines on facultative scavengers and potential implications for mammalian disease transmission. Conserv. Biol. 26, 453–460, https://doi.org/10.1111/j.1523-1739.2012.01827.x (2012).

  • 24.

    Markandya, A. et al. Counting the cost of vulture decline—An appraisal of the human health and other benefits of vultures in India. Ecol. Econ. 67, 194–204, https://doi.org/10.1016/j.ecolecon.2008.04.020 (2008).

    • Article
    • Google Scholar
  • 25.

    Jennelle, C. S., Samuel, M. D., Nolden, C. A. & Berkley, E. A. Deer Carcass Decomposition and Potential Scavenger Exposure to Chronic Wasting Disease. J. Wildl. Manag. 73, 655–662, https://doi.org/10.2193/2008-282 (2009).

    • Article
    • Google Scholar
  • 26.

    Boone, A., Kraft, J. P. & Stapp, P. Scavenging by Mammalian Carnivores on Prairie Dog Colonies: Implications for the Spread of Plague. Vector-Borne Zoonotic Dis. 9, 185–189, https://doi.org/10.1089/vbz.2008.0034 (2009).

  • 27.

    Byrom, A. E., Caley, P., Paterson, B. M. & Nugent, G. Feral ferrets (Mustela furo) as hosts and sentinels of tuberculosis in New Zealand. N. Zealand Veterinary J. 63, 42–53, https://doi.org/10.1080/00480169.2014.981314 (2015).

    • Article
    • Google Scholar
  • 28.

    Bellan, S. E. et al. Black-Backed Jackal Exposure To Rabies Virus, Canine Distemper Virus, And Bacillus Anthracis In Etosha National Park, Namibia. J. Wildl. Dis. 48, 371–381, https://doi.org/10.7589/0090-3558-48.2.371 (2012).

  • 29.

    Sekercioglu, C. H. Increasing awareness of avian ecological function. Trends Ecol. Evolution 21, 464–471, https://doi.org/10.1016/j.tree.2006.05.007 (2006).

    • Article
    • Google Scholar
  • 30.

    Huijbers, C. M. et al. Limited functional redundancy in vertebrate scavenger guilds fails to compensate for the loss of raptors from urbanized sandy beaches. Diversity Distrib. 21, 55–63, https://doi.org/10.1111/ddi.12282 (2015).

    • Article
    • Google Scholar
  • 31.

    DeVault, T. L., Olson, Z. H., Beasley, J. C. & Rhodes, O. E. Mesopredators dominate competition for carrion in an agricultural landscape. Basic. Appl. Ecol. 12, 268–274, https://doi.org/10.1016/j.baae.2011.02.008 (2011).

    • Article
    • Google Scholar
  • 32.

    Graham, K., Beckerman, A. P. & Thirgood, S. Human-predator-prey conflicts: ecological correlates, prey losses and patterns of management. Biol. Conserv. 122, 159–171, https://doi.org/10.1016/j.biocon.2004.06.006 (2005).

    • Article
    • Google Scholar
  • 33.

    Berger, K. M. Carnivore-livestock conflicts: Effects of subsidized predator control and economic correlates on the sheep industry. Conserv. Biol. 20, 751–761, https://doi.org/10.1111/j.1523-1739.2006.00336.x (2006).

  • 34.

    Conner, L. M. & Morris, G. Impacts of Mesopredator Control on Conservation of Mesopredators and Their Prey. Plos One 10, https://doi.org/10.1371/journal.pone.0137169 (2015).

    • Article
    • Google Scholar
  • 35.

    Boring, L. R. The Joseph W. Jones Ecological Research Center: Co-directed applied and basic research in the private sector. Holistic science: the evolution of the Georgia Institute of Ecology (1940–2000). Taylor and Francis, New York, New York, 233–258 (2001).

  • 36.

    NOAA. National Environmental Satellite, Data, and Information Service. Summary of Monthly Normals 1981–2010 for Newton 8W, GA US, 2015).

  • 37.

    Conner, L. M., Rutledge, J. C. & Smith, L. L. Effects of Mesopredators on Nest Survival of Shrub-Nesting Songbirds. J. Wildl. Manag. 74, 73–80, https://doi.org/10.2193/2008-406 (2010).

    • Article
    • Google Scholar
  • 38.

    Smith, L. L., Steen, D. A., Conner, L. M. & Rutledge, J. C. Effects of predator exclusion on nest and hatchling survival in the gopher tortoise. J. Wildl. Manag. 77, 352–358, https://doi.org/10.1002/jwmg.449 (2013).

    • Article
    • Google Scholar
  • 39.

    Derrick, A. M., Conner, L. M. & Castleberry, S. B. Effects of Prescribed Fire and Predator Exclusion on Refuge Selection by Peromyscus gossypinus Le Conte (Cotton Mouse). Southeast. Naturalist 9, 773–780, https://doi.org/10.1656/058.009.0411 (2010).

    • Article
    • Google Scholar
  • 40.

    Chapman, J. A., Hockman, J. G., Ojeda, C. & Magaly, M. Sylvilagus floridanus. Mammalian species, 1–8 (1980).

  • 41.

    Main, M. B. & Tanner, G. W. Effects of fire on Florida’s wildlife and wildlife habitat. (University of Florida Cooperative Extension Service, Institute of Food and …, 1999).

  • 42.

    Ray, R. R., Seibold, H. & Heurich, M. Invertebrates outcompete vertebrate facultative scavengers in simulated lynx kills in the Bavarian Forest National Park, Germany. Anim. Biodivers. Conserv. 37, 77–88 (2014).

    • Google Scholar
  • 43.

    Parmenter, R. R. & MacMahon, J. A. Carrion decomposition and nutrient cycling in a semiarid shrub-steppe ecosystem. Ecol. Monogr. 79, 637–661, https://doi.org/10.1890/08-0972.1 (2009).

    • Article
    • Google Scholar
  • 44.

    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, 2017).

  • 45.

    Bates, D., Machler, M., Bolker, B. M. & Walker, S. C. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 67, 1–48 (2015).

    • Article
    • Google Scholar
  • 46.

    Frank, S. A. The common patterns of nature. J. Evolut. Biol. 22, 1563–1585 (2009).

  • 47.

    Smith, J. B., Laatsch, L. J. & Beasley, J. C. Spatial complexity of carcass location influences vertebrate scavenger efficiency and species composition. Scientific Reports 7, https://doi.org/10.1038/s41598-017-10046-1 (2017).

  • 48.

    Olson, Z. H., Beasley, J. C. & Rhodes, O. E. Carcass Type Affects Local Scavenger Guilds More than Habitat Connectivity. Plos One 11, https://doi.org/10.1371/journal.pone.0147798 (2016).

    • Article
    • Google Scholar
  • 49.

    Farwig, N., Brandl, R., Siemann, S., Wiener, F. & Muller, J. Decomposition rate of carrion is dependent on composition not abundance of the assemblages of insect scavengers. Oecologia 175, 1291–1300, https://doi.org/10.1007/s00442-014-2974-y (2014).

  • 50.

    Kirby, R. B. et al. Indirect predation management in a longleaf pine ecosystem: Hardwood removal and the spatial ecology of raccoons. For. Ecol. Manag. 381, 327–334, https://doi.org/10.1016/j.foreco.2016.09.046 (2016).

    • Article
    • Google Scholar
  • 51.

    Cherry, M. J., Howell, P. E., Seagraves, C. D., Warren, R. J. & Conner, L. M. Effects of land cover on coyote abundance. Wildl. Res. 43, 662–670, https://doi.org/10.1071/wr16052 (2016).

    • Article
    • Google Scholar
  • 52.

    Deuel, N. R. et al. Habitat selection and diurnal refugia of gray foxes in southwestern Georgia, USA. Plos One 12, https://doi.org/10.1371/journal.pone.0186402 (2017).

    • Article
    • Google Scholar
  • 53.

    Little, A. R., Conner, L. M., Chamberlain, M. J., Nibbelink, N. P. & Warren, R. J. Adult bobcat (Lynx rufus) habitat selection in a longleaf pine savanna. Ecol. Process. 7, 20 (2018).

    • Article
    • Google Scholar
  • 54.

    Jedrzejewski, W. & Jedrzejewska, B. Foraging and diet of the red fox Vulpes vulpes in relation to variable food resources in Bialowieza National Park, Poland. Ecography 15, 212–220, https://doi.org/10.1111/j.1600-0587.1992.tb00027.x (1992).

    • Article
    • Google Scholar
  • 55.

    Komen, J. Energy requirements of nestling Cape Vultures. Condor 93, 153–158 (1991).

    • Article
    • Google Scholar
  • 56.

    Houston, C. S. et al. Breeding home ranges of migratory Turkey Vultures near their northern limit. Wilson J. Ornithology 123, 472–478 (2011).

    • Article
    • Google Scholar
  • 57.

    Holland, A. E. et al. Fine-scale assessment of home ranges and activity patterns for resident black vultures (Coragyps atratus) and turkey vultures (Cathartes aura). Plos One 12, https://doi.org/10.1371/journal.pone.0179819 (2017).

    • Article
    • Google Scholar
  • 58.

    Howell, D. L. & Chapman, B. R. Home range and habitat use of Red-shouldered Hawks in Georgia. The Wilson Bulletin, 131–144 (1997).


  • Source: Ecology - nature.com

    Early high rates and disparity in the evolution of ichthyosaurs

    Oxygen lost and found