in

Effect of nitrogen (N) deposition on soil-N processes: a holistic approach

  • 1.

    Waldrop, M. P., Zak, D. K., Sinsabaugh, R. L., Gallo, M. & Lauber, C. Nitrogen deposition modifies soil carbon storage through changes in microbial enzymatic activity. Ecol. Appl. 14, 1172–1177. https://doi.org/10.1890/03-5120 (2004).

    Article  Google Scholar 

  • 2.

    Zhaohui, L. et al. Strategies for Managing Soil Nitrogen to Prevent Nitrate-N Leaching in Intensive Agriculture System (Institute of Agricultural Resources and Environment Shandong Academy of Agricultural Sciences, Jinan, 2012).

    Google Scholar 

  • 3.

    Fowler, D. et al. The global nitrogen cycle in the twenty-first century. Philos. Trans. R. Soc. B 368, 20130164. https://doi.org/10.1098/rstb.2013.0164 (2013).

    CAS  Article  Google Scholar 

  • 4.

    Galloway, J. N. et al. Nitrogen cycles: past, present, and future. Biogeochemistry 70, 153–226. https://doi.org/10.1007/s10533-004-0370-0 (2004).

    CAS  Article  Google Scholar 

  • 5.

    Galloway, J. N. et al. Transformation of the nitrogen cycle. Science 320, 889–892. https://doi.org/10.1126/science.1136674 (2008).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 6.

    Zhou, L. et al. Interactive effects of global change factors on soil respiration and its components: a metaanalysis. Glob. Change Biol. 22, 3157–3169. https://doi.org/10.1111/gcb.13253 (2016).

    ADS  Article  Google Scholar 

  • 7.

    Galloway, J. N. Nitrogen mobilization in Asia. Nutr. Cycl. Agroecosyst. 57, 1–12. https://doi.org/10.1023/A:1009832221034 (2000).

    Article  Google Scholar 

  • 8.

    Lamarque, J. F. et al. Assessing future nitrogen deposition and carbon cycle feedback using a multimodel approach: analysis of nitrogen deposition. J. Geophys. Res. D: Atmos. 110, 1–21. https://doi.org/10.1029/2005JD005825 (2005).

    Article  Google Scholar 

  • 9.

    Zheng, X. et al. The Asian nitrogen cycle case study. Ambio 31, 79–87. https://doi.org/10.1639/0044-7447(2002)031[0079:Tanccs]2.0.Co;2 (2002).

    Article  PubMed  Google Scholar 

  • 10.

    Galloway, J. N. Acid deposition: perspectives in time and space. Water Air Soil Pollut. 85, 15–24. https://doi.org/10.1007/BF00483685 (1995).

    ADS  CAS  Article  Google Scholar 

  • 11.

    Tilman, D. et al. Forecasting agriculturally driven global environmental change. Science 292, 281–284. https://doi.org/10.1126/science.1057544 (2001).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 12.

    Hirel, B., Le Gouis, J., Ney, B. & Gallais, A. The challenge of improving nitrogen use efficiency in crop plants: towards a more central role for genetic variability and quantitative genetics within integrated approaches. J. Exp. Bot. 58, 2369–2387. https://doi.org/10.1093/jxb/erm097 (2007).

    CAS  Article  PubMed  Google Scholar 

  • 13.

    Schultze-Kraft, R. et al. Tropical forage legumes for environmental benefits: an overview. Trop. Grassl. Forrajes Trop. 6, 1. https://doi.org/10.17138/TGFT(6)1-14 (2018).

    Article  Google Scholar 

  • 14.

    Gundersen, P., Emmett, B. A., Kjønaas, O. J., Koopmans, C. J. & Tietema, T. Impact of nitrogen deposition on nitrogen cycling in forests: a synthesis of NITREX data. For. Ecol. Manag. 101, 37–55. https://doi.org/10.1016/S0378-1127(97)00124-2 (1998).

    Article  Google Scholar 

  • 15.

    Gundersen, P., Schmidt, I. K. & Raulund-Rasmussen, K. Leaching of nitrate from temperate forests—effects of air pollution and forest management. Environ. Rev. 14, 1–57. https://doi.org/10.1139/a05-015 (2006).

    CAS  Article  Google Scholar 

  • 16.

    Elser, J. J. et al. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol. Lett. 10, 1135–1142. https://doi.org/10.1111/j.1461-0248.2007.01113.x (2007).

    Article  PubMed  Google Scholar 

  • 17.

    Tu, L. H. et al. Nitrogen addition significantly affects forest litter decomposition under high levels of ambient nitrogen deposition. PLoS ONE https://doi.org/10.1371/journal.pone.0088752 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • 18.

    van Groenigen, J. W. et al. The soil N cycle: new insights and key challenges. Soil 1, 235–256. https://doi.org/10.5194/soil-1-235-2015 (2015).

    Article  Google Scholar 

  • 19.

    Dirnböck, T. et al. Historic nitrogen deposition determines future climate change effects on nitrogen retention in temperate forests. Clim. Change 144, 221–235. https://doi.org/10.1007/s10584-017-2024-y (2017).

    ADS  CAS  Article  Google Scholar 

  • 20.

    Yang, X. et al. Nitrogen fertilization, not water addition, alters plant phylogenetic community structure in a semi-arid steppe. J. Ecol. 106, 991–1000. https://doi.org/10.1111/1365-2745.12893 (2018).

    Article  Google Scholar 

  • 21.

    Verma, P., Verma, P. & Sagar, R. Variations in N mineralization and herbaceous species diversity due to sites, seasons, and N treatments in a seasonally dry tropical environment of India. For. Ecol. Manag. 297, 15–26. https://doi.org/10.1016/j.foreco.2013.02.006 (2013).

    Article  Google Scholar 

  • 22.

    Sagar, R., Verma, P., Verma, H., Singh, D. K. & Verma, P. Species diversity–primary productivity relationships in a nitrogen amendment experiment in grasslands at Varanasi, India. Curr. Sci. 108, 2163–2166 (2015).

    Google Scholar 

  • 23.

    Bobbink, R. et al. Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecol. Appl. 20, 30–59. https://doi.org/10.1890/08-1140.1 (2010).

    CAS  Article  PubMed  Google Scholar 

  • 24.

    Suddick, E. C., Whitney, P., Townsend, A. R. & Davidson, E. A. The role of nitrogen in climate change and the impacts of nitrogen–climate interactions in the United States: foreword to thematic issue. Biogeochemistry 114, 1–10. https://doi.org/10.1007/s10533-012-9795-z (2013).

    CAS  Article  Google Scholar 

  • 25.

    Boutin, M. et al. Nitrogen deposition and climate change have increased vascular plant species richness and altered the composition of grazed subalpine grasslands. J. Ecol. 105, 1199–1209. https://doi.org/10.1111/1365-2745.12743 (2017).

    Article  Google Scholar 

  • 26.

    Townsend, A. R. & Howarth, R. W. Fixing the global nitrogen problem. Sci. Am. 302, 64–71. https://doi.org/10.1038/scientificamerican0210-64 (2010).

    CAS  Article  PubMed  Google Scholar 

  • 27.

    Davidson, E. A., et al. Excess nitrogen in the U.S. environment: trends, risks, and solutions. Issues Ecol. 15, 1–16 (2012).

    Google Scholar 

  • 28.

    Erisman, J. W. et al. Consequences of human modification of the global nitrogen cycle. Philos. Trans. R. Soc. B 368, 20130116. https://doi.org/10.1098/rstb.2013.0116 (2013).

    CAS  Article  Google Scholar 

  • 29.

    Singh, J. S., Raghubanshi, A. S., Singh, R. S. & Srivastava, S. C. Microbial biomass acts as a source of plant nutrients in dry tropical forest and savanna. Nature 338, 449–500 (1989).

    ADS  Article  Google Scholar 

  • 30.

    Fisk, M. C. & Fahey, T. J. Microbial biomass and nitrogen cycling responses to fertilization and litter removal in young northern hardwood forests. Biogeochemistry 53, 201–223. https://doi.org/10.1023/A:1010693614196 (2001).

    CAS  Article  Google Scholar 

  • 31.

    Wang, H. et al. Effects of elevated nitrogen deposition on soil microbial biomass carbon in major subtropical forests of southern China. Front. For. China 4, 21–27. https://doi.org/10.1007/s11461-009-0013-7 (2009).

    Article  Google Scholar 

  • 32.

    Zhang, T., Chen, H. Y. H. & Ruan, H. Global negative effects of nitrogen deposition on soil microbes. ISME J. 12, 1817–1825. https://doi.org/10.1038/s41396-018-0096-y (2018).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 33.

    Zhang, Y. et al. Evaluation and simulation of nitrogen mineralization of paddy soils in Mollisols area of Northeast China under waterlogged incubation. PLoS ONE 12(2), 1. https://doi.org/10.1371/journal.pone.0171022 (2017).

    CAS  Article  Google Scholar 

  • 34.

    Fu, M. H., Xu, X. C. & Tabatabai, M. A. Effect of pH on nitrogen mineralization in crop-residue-treated soils. Biol. Fertil. Soils 5, 115–119 (1987).

    Article  Google Scholar 

  • 35.

    Perakis, S. S. & Sinkhorn, E. R. Biogeochemistry of a temperate forest nitrogen gradient. Ecology 92, 1481–1491. https://doi.org/10.1890/10-1642.1 (2011).

    Article  PubMed  Google Scholar 

  • 36.

    Brenner, R. E., Boone, R. D. & Ruess, R. W. Nitrogen additions to pristine, high-latitude, forest ecosystems: consequences for soil nitrogen transformations and retention in mid and late succession. Biogeochemistry 72, 257–282. https://doi.org/10.1007/s10533-004-0356-y (2005).

    Article  Google Scholar 

  • 37.

    Dijkstra, F. A., Hobbie, S. E., Reich, P. B. & Knops, J. M. H. Divergent effects of elevated CO2, N fertilization, and plant diversity on soil C and N dynamics in a grassland field experiment. Plant Soil 272, 41–52. https://doi.org/10.1007/s11104-004-3848-6 (2005).

    CAS  Article  Google Scholar 

  • 38.

    Sirulnik, A. G., Allen, E. B., Meixner, T. & Allen, M. F. Impacts of anthropogenic N additions on nitrogen mineralization from plant litter in exotic annual grasslands. Soil Biol. Biochem. 39, 24–32. https://doi.org/10.1016/j.soilbio.2006.04.048 (2007).

    CAS  Article  Google Scholar 

  • 39.

    Soon, Y. K. & Malhi, S. S. Soil nitrogen dynamics as affected by landscape position and nitrogen fertilizer. Can. J. Soil Sci. 85, 579–587. https://doi.org/10.4141/S04-072 (2005).

    Article  Google Scholar 

  • 40.

    Chappell, H. N., Prescott, C. E. & Vesterdal, L. Long-term effects of nitrogen fertilization on nitrogen availability in coastal Douglas-fir forest floors. Soil Sci. Soc. Am. J. 63, 1448–1454. https://doi.org/10.2136/sssaj1999.6351448x (1999).

    CAS  Article  Google Scholar 

  • 41.

    Gilliam, F. S., Yurish, Y. B. & Adams, M. B. Temporal and spatial variation of nitrogen transformations in nitrogen-saturated soils of a central Appalachian hardwood forest. Can. J. For. Res. 31, 1768–1785. https://doi.org/10.1139/cjfr-31-10-1768 (2001).

    CAS  Article  Google Scholar 

  • 42.

    Nohrstedt, H. Ö. Effects of liming and fertilization (N, P, K) on chemistry and nitrogen turnover in acidic forest soils in SW Sweden. Water Air Soil Pollut. 139, 343–354. https://doi.org/10.1023/A:1015858922200 (2002).

    ADS  CAS  Article  Google Scholar 

  • 43.

    Zhang, X. et al. Effect of nitrogen fertilization on net nitrogen mineralization in a grassland soil, northern China. Grass Forage Sci. 67, 219–230. https://doi.org/10.1111/j.1365-2494.2011.00836.x (2012).

    CAS  Article  Google Scholar 

  • 44.

    Aber, J. et al. Nitrogen saturation in forest ecosystems hypotheses revisited. Bioscience 48, 921–934. https://doi.org/10.2307/1313296 (1998).

    Article  Google Scholar 

  • 45.

    Herai, Y., Kouno, K., Hashimoto, M. & Nagaoka, T. Relationships between microbial biomass nitrogen, nitrate leaching and nitrogen uptake by corn in a compost and chemical fertilizer-amended regosol. Soil Sci. Plant Nutr. 52, 186–194. https://doi.org/10.1111/j.1747-0765.2006.00031.x (2006).

    Article  Google Scholar 

  • 46.

    Rustad, L. E. et al. A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia 126, 543–562. https://doi.org/10.1007/s004420000544 (2001).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 47.

    Beier, C. et al. Carbon and nitrogen cycles in European ecosystems respond differently to global warming. Sci. Total Environ. 407, 692–697. https://doi.org/10.1016/j.scitotenv.2008.10.001 (2008).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 48.

    Crowley, K. F. & Lovett, G. M. Effects of nitrogen deposition on nitrate leaching from forests of the northeastern United States will change with tree species composition. Can. J. For. Res. 47, 997–1009. https://doi.org/10.1139/cjfr-2016-0529 (2017).

    Article  Google Scholar 

  • 49.

    Braakhekke, M. C. et al. Nitrogen leaching from natural ecosystems under global change: a modelling study. Earth Syst. Dyn. 8, 1121–1139. https://doi.org/10.5194/esd-8-1121-2017 (2017).

    ADS  Article  Google Scholar 

  • 50.

    Matson, P., Lohse, K. A. & Hall, S. J. The globalization of nitrogen deposition: consequences for terrestrial ecosystems. AMBIO J. Hum. Environ. 31, 113–119. https://doi.org/10.1579/0044-7447-31.2.113 (2002).

    Article  Google Scholar 

  • 51.

    Fang, Y. et al. Large loss of dissolved organic nitrogen from nitrogen-saturated forests in subtropical China. Ecosystems 12, 33–45. https://doi.org/10.1007/s10021-008-9203-7 (2009).

    CAS  Article  Google Scholar 

  • 52.

    Camenzind, T., Hättenschwiler, S., Treseder, K. K., Lehmann, A. & Rillig, M. C. Nutrient limitation of soil microbial processes in tropical forests. Ecol. Monogr. 88, 4–21. https://doi.org/10.1002/ecm.1279 (2018).

    Article  Google Scholar 

  • 53.

    Zhao, B. et al. Environmental effects of the recent emission changes in China: implications for particulate matter pollution and soil acidification. Environ. Res. Lett. 8(2), 1. https://doi.org/10.1088/1748-9326/8/2/024031 (2013).

    CAS  Article  Google Scholar 

  • 54.

    SDG (Sustainable Development Goal). 2019. UN Report: Nature’s Dangerous Decline ‘Unprecedented; Species Extinction Rates ‘Accelerating’. (Assessed on 6th June, 2019); https://www.un.org/sustainabledevelopment/blog/2019/05/nature-decline-unprecedented-report/.

  • 55.

    Stevens, C. J., Thompson, K., Grime, J. P., Long, C. J. & Gowing, D. J. G. Contribution of acidification and eutrophication to declines in species richness of calcifuge grasslands along a gradient of atmospheric nitrogen deposition. Funct. Ecol. 24, 478–484. https://doi.org/10.1111/j.1365-2435.2009.01663.x (2010).

    Article  Google Scholar 

  • 56.

    Sagar, R. & Verma, P. Effects of soil physical characteristics and biotic interferences on the herbaceous community composition and species diversity on the campus of Banaras Hindu University India . Environmentalist 30, 289–298. https://doi.org/10.1007/s10669-010-9276-7 (2010).

    Article  Google Scholar 

  • 57.

    Bowman, W. D., Cleveland, C. C., Halada, L., Hreško, J. & Baron, J. S. Negative impact of nitrogen deposition on soil buffering capacity. Nat. Geosci. 1, 767–770. https://doi.org/10.1038/ngeo339 (2008).

    ADS  CAS  Article  Google Scholar 

  • 58.

    Zvomuya, F., Rosen, J., Russelle, P. & Gupta, C. Nitrate leaching and nitrogen recovery following application of polyolefin-coated urea to potato. J. Environ. Qual. 32, 480–489. https://doi.org/10.2134/jeq2003.0480 (2003).

    CAS  Article  PubMed  Google Scholar 

  • 59.

    Verma, P., Sagar, R., Verma, H., Verma, P. & Singh, D. K. Changes in species composition, diversity and biomass of herbaceous plant traits due to N amendment in a dry tropical environment of India. J. Plant Ecol. 8, 321–332. https://doi.org/10.1093/jpe/rtu018 (2015).

    Article  Google Scholar 

  • 60.

    Agrawal, R. R. & Mehrotra, C. L. Soil Work in Uttar Pradesh Vol. 2 (Department of Agriculture, Lucknow, 1952).

    Google Scholar 

  • 61.

    Buol, S. W., Southard, R. J., Graham, R. C. & McDaniel, P. A. Soil Genesis and Classification 5th edn. (Iowa State Press, Ames, IA, 2003).

    Google Scholar 

  • 62.

    Singh, H. & Singh, K. P. Biology and fertility of soils effect of residue placement and chemical fertilizer on soil microbial biomass under tropical dryland cultivation. Soil Biol. Biochem. 26, 695–702 (1994).

    Article  Google Scholar 

  • 63.

    Sagar, R., Singh, A. & Singh, J. S. Differential effect of woody plant canopies on species composition and diversity of ground vegetation: a case study. Trop. Ecol. 49, 189–197 (2008).

    Google Scholar 

  • 64.

    Verma, P. & Sagar, R. Responses of diversity, productivity, and stability to the nitrogen input in a tropical grassland. Ecol. Appl. https://doi.org/10.1002/eap.2037 (2020).

    Article  PubMed  Google Scholar 

  • 65.

    Bai, W. et al. Differential responses of grasses and forbs led to marked reduction in below-ground productivity in temperate steppe following chronic N deposition. J. Ecol. 103, 1570–1579 (2015).

    CAS  Article  Google Scholar 

  • 66.

    Tian, D. & Niu, S. A global analysis of soil acidification caused by nitrogen addition. Environ. Res. Lett. 10, 1748–9326. https://doi.org/10.1088/1748-9326/10/2/024019 (2015).

    CAS  Article  Google Scholar 

  • 67.

    Lu, X., Mao, Q., Gilliam, F. S., Luo, Y. & Mo, J. Nitrogen deposition contributes to soil acidification in tropical ecosystems. Glob. Change Biol. 20, 3790–3801. https://doi.org/10.1111/gcb.12665 (2014).

    ADS  Article  Google Scholar 

  • 68.

    Jackson, M. Soil Chemical Analysis (Prentice Hall, Englewood Cliffs, NJ, 1958).

    Google Scholar 

  • 69.

    APHA. Standard methods for the examination of water and wastewater (American Public Health Association APHA, Washington, DC, 1985).

    Google Scholar 

  • 70.

    Gilbert, O. & Bocock, K. L. Changes in leaf litter when placed on the surface of soils with contrasting humus types: I. Losses in dry weight of oak and ash leaf litter. J. Soil Sci. 11, 1–9. https://doi.org/10.1111/j.1365-2389.1960.tb02196.x (1960).

    Article  Google Scholar 

  • 71.

    Olson, J. S. Energy storage and the balance of producers and decomposers in ecological systems. Ecology 44, 322–331 (1963).

    Article  Google Scholar 

  • 72.

    Ezcurra, E. & Becerra, J. Experimental decomposition of litter from the Tamaulipan cloud forest: a comparison of four simple models. Biotropica 19, 290–296. https://doi.org/10.2307/2388624 (1987).

    Article  Google Scholar 

  • 73.

    Roy, S. & Singh, J. S. Consequences of habitat heterogeneity for availability of nutrients in a dry tropical forest. J. Ecol. 82, 503–509. https://doi.org/10.2307/2261259 (1994).

    CAS  Article  Google Scholar 

  • 74.

    Vance, E. D., Brookes, P. C. & Jenkinson, D. S. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 19, 703–707. https://doi.org/10.1016/0038-0717(87)90052-6 (1987).

    CAS  Article  Google Scholar 

  • 75.

    Wu, J., Joergensen, R. G., Pommerening, B., Chaussod, R. & Brookes, P. C. Measurement of soil microbial biomass C by fumigation-extraction—an automated procedure. Soil Biol. Biochem. 22, 1167–1169 (1990).

    CAS  Article  Google Scholar 

  • 76.

    Brookes, P. C., Landman, A., Pruden, G. & Jenkinson, D. S. Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol. Biochem. 17, 837–842 (1985).

    CAS  Article  Google Scholar 

  • 77.

    Gaidajis, G. Ambient concentrations of Total Suspended Particulate matter and its elemental constituents at the wider area of the mining facilities of TVX Hellas in Chalkidiki, Greece. J. Environ. Sci. Health A Toxic/Hazard. Subst. Environ. Eng. 38, 2509–2520. https://doi.org/10.1081/ESE-120024443 (2003).

    CAS  Article  Google Scholar 

  • 78.

    Hedges, L. V., Gurevitch, J. & Curtis, P. S. The meta-analysis of response ratios in experimental ecology. Ecology 80, 1150–1156. https://doi.org/10.2307/177062 (1999).

    Article  Google Scholar 

  • 79.

    Curtis, P. S. & Wang, X. A meta-analysis of elevated CO2 effects on woody plant mass, form, and physiology. Oecologia 113, 299–313. https://doi.org/10.1007/s004420050381 (1998).

    ADS  Article  PubMed  Google Scholar 

  • 80.

    Luo, Y., Hui, D. & Zhang, D. Elevated CO2 stimulates net accumulations of carbon and nitrogen in land ecosystems: a meta-analysis. Ecology 87, 53–63. https://doi.org/10.1016/j.jconrel.2006.05.010 (2006).

    CAS  Article  PubMed  Google Scholar 

  • 81.

    SPSS. SPSS Base 7.5, Applications Guide (SPSS, Chicago, 1997).

    Google Scholar 

  • 82.

    Arbuckle, J. L. AMOS 16 User’s Guide (AMOS Development Corporation, Spring House, 2007).

    Google Scholar 

  • 83.

    Clark, J. S. Landscape interactions among nitrogen mineralization, species composition, and long-term fire frequency. Biogeochemistry 11, 1–22 (1990).

    Article  Google Scholar 

  • 84.

    Rao, L. E., Parker, D. R., Bytnerowicz, A. & Allen, E. B. Nitrogen mineralization across an atmospheric nitrogen deposition gradient in Southern California deserts. J. Arid Environ. 73, 920–930. https://doi.org/10.1016/j.jaridenv.2009.04.007 (2009).

    ADS  Article  Google Scholar 

  • 85.

    Smith, S. E. & Read, D. J. Mycorrhizal Symbiosis 3rd edn. (Academic Press, New York, 2008).

    Google Scholar 

  • 86.

    McLaughlin, S. B. & Wimmer, R. Calcium physiology and terrestrial ecosystem processes. Tansley Review No. 104. New Phytol. 142, 373–417 (1999).

    CAS  Article  Google Scholar 

  • 87.

    Arunachalam, A. & Arunachalam, K. Influence of gap size and soil properties on microbial biomass in a subtropical humid forest of north-east India. Plant Soil 223, 187–195. https://doi.org/10.1023/A:1004828221756 (2000).

    Article  Google Scholar 

  • 88.

    Wang, R., Creamer, C. A., Wang, X., He, P. & Xu, Z. The effects of a 9-year nitrogen and water addition on soil aggregate phosphorus and sulfur availability in a semi-arid grassland. Ecol. Indic. 61, 806–814. https://doi.org/10.1016/j.ecolind.2015.10.033 (2016).

    CAS  Article  Google Scholar 

  • 89.

    Song, B., Niu, S., Li, L., Zhang, L. & Yu, G. Soil carbon fractions in grasslands respond differently to various levels of nitrogen enrichments. Plant Soil 384, 401–412. https://doi.org/10.1007/s11104-014-2219-1 (2014).

    CAS  Article  Google Scholar 

  • 90.

    Van Diepen, L. T. A., Frey, S. D., Landis, E. A., Morrison, E. W. & Pringle, A. Fungi exposed to chronic nitrogen enrichment are less able to decay leaf litter. Ecology 98, 5–11. https://doi.org/10.1002/ecy.1635 (2017).

    Article  PubMed  Google Scholar 

  • 91.

    Treseder, K. K. Nitrogen additions and microbial biomass: a meta-analysis of ecosystem studies. Ecol. Lett. 11, 1111–1120. https://doi.org/10.1111/j.1461-0248.2008.01230.x (2008).

    Article  PubMed  Google Scholar 

  • 92.

    Franzluebbers, A. J., Haney, R. L., Honeycutt, C. W., Schomberg, H. H. & Hons, F. M. Flush of carbon dioxide following rewetting of dried soil relates to active organic pools. Soil Sci. Soc. Am. J. 64, 613. https://doi.org/10.2136/sssaj2000.642613x (2000).

    ADS  CAS  Article  Google Scholar 

  • 93.

    Fierer, N. & Schimel, J. P. Effects of drying-rewetting frequency on soil carbon and nitrogen transformations. Soil Biol. Biochem. 34, 777–787. https://doi.org/10.1016/S0038-0717(02)00007-X (2002).

    CAS  Article  Google Scholar 

  • 94.

    van Gestel, M., Ladd, J. N. & Amato, M. Microbial biomass responses to seasonal change and imposed drying regimes at increasing depths of undisturbed topsoil profiles. Soil Biol. Biochem. 24, 103–111. https://doi.org/10.1016/0038-0717(92)90265-Y (1992).

    Article  Google Scholar 

  • 95.

    Kieft, T. L., Soroker, E. & Firestone, M. K. Microbial biomass response to a rapid increase in water potential when dry soil is wetted. Soil Biol. Biochem. 19, 119–126. https://doi.org/10.1016/0038-0717(87)90070-8 (1987).

    Article  Google Scholar 

  • 96.

    Yokobe, T., Hyodo, F. & Tokuchi, N. Seasonal effects on microbial community structure and nitrogen dynamics in temperate forest soil. Forests 9, 1–17. https://doi.org/10.3390/f9030153 (2018).

    Article  Google Scholar 

  • 97.

    Hobbie, S. E. Interactions between litter lignin and soil nitrogen availability during leaf litter decomposition in a Hawaiian montane forest. Ecosystems 3, 484–494. https://doi.org/10.1007/s100210000042 (2000).

    CAS  Article  Google Scholar 

  • 98.

    Knorr, M., Frey, S. D. & Curtis, P. S. Nitrogen additions and litter decomposition: a meta-analysis. Ecology 86, 3252–3257. https://doi.org/10.1890/05-0150 (2005).

    Article  Google Scholar 

  • 99.

    Zhang, Y. et al. Responses of soil respiration to land use conversions in degraded ecosystem of the semi-arid Loess Plateau. Ecol. Eng. 74, 196–205. https://doi.org/10.1016/j.ecoleng.2014.10.003 (2015).

    Article  Google Scholar 

  • 100.

    Vourlitis, G. L., Zorba, G., Pasquini, S. C. & Mustard, R. Chronic nitrogen deposition enhances nitrogen mineralization potential of semiarid shrubland soils. Soil Sci. Soc. Am. J. 71, 836. https://doi.org/10.2136/sssaj2006.0339 (2007).

    ADS  CAS  Article  Google Scholar 

  • 101.

    Delin, S. & Lindén, B. Relations between net nitrogen mineralization and soil characteristics within an arable field. Acta Agric. Scand. Sect. B Soil Plant Sci. 52, 78–85. https://doi.org/10.1080/090647102321089819 (2002).

    CAS  Article  Google Scholar 

  • 102.

    Campbell, B. J., Polson, S. W., Hanson, T. E., Mack, M. C. & Schuur, E. A. G. The effect of nutrient deposition on bacterial communities in Arctic tundra soil. Environ. Microbiol. 12, 1842–1854. https://doi.org/10.1111/j.1462-2920.2010.02189.x (2010).

    CAS  Article  PubMed  Google Scholar 

  • 103.

    Bárta, J., Tahovská, K., Šantrůčková, H. & Oulehle, F. Microbial communities with distinct denitrification potential in spruce and beech soils differing in nitrate leaching. Sci. Rep. 7, 1–15. https://doi.org/10.1038/s41598-017-08554-1 (2017).

    CAS  Article  Google Scholar 

  • 104.

    Xiao, K., Yu, L., Xu, J. & Brookes, P. C. pH, nitrogen mineralization, and KCl-extractable aluminum as affected by initial soil pH and rate of vetch residue application: results from a laboratory study. J. Soils Sedim. 14, 1513–1525. https://doi.org/10.1007/s11368-014-0909-1 (2014).

    CAS  Article  Google Scholar 

  • 105.

    Mlambo, D., Mwenje, E. & Nyathi, P. Effects of tree cover and season on soil nitrogen dynamics and microbial biomass in an African savanna woodland dominated by Colophospermum mopane. J. Trop. Ecol. 23, 437–448 (2007).

    Article  Google Scholar 

  • 106.

    Schwab, G. J. & Murdock, L. W. Nitrogen Transformation Inhibitors and Controlled Release Urea. University of Kentucky College of Agriculture, Lexington, KY, 40546. AGR185. www.ca.uky.edu (2010).

  • 107.

    Seitzinger, S. et al. Denitrification across landscapes and waterscapes: a synthesis. Ecol. Appl. 16, 2064–2090. https://doi.org/10.1890/1051-0761(2006)016[2064:DALAWA]2.0.CO;2 (2006).

    CAS  Article  PubMed  Google Scholar 

  • 108.

    McCrackin, M. L. & Elser, J. J. Atmospheric nitrogen deposition influences denitrification and nitrous oxide production in lakes. Ecology 91, 528–539. https://doi.org/10.1890/08-2210.1 (2010).

    Article  PubMed  Google Scholar 

  • 109.

    Binkley, D. & Högberg, P. Does atmospheric deposition of nitrogen threaten Swedish forests?. For. Ecol. Manag. 92, 119–152. https://doi.org/10.1016/S0378-1127(96)03920-5 (1997).

    Article  Google Scholar 

  • 110.

    Lu, X. & Dong, S. Effects of nitrogen deposition on forest biodiversity. Acta Ecol. Sin. 28, 5532–5548. https://doi.org/10.1016/S1872-2032(09)60012-3 (2008).

    CAS  Article  Google Scholar 

  • 111.

    Eckert, D. Efficient Fertilizer Use Mannual—Nitrogen. http://www.rainbowplantfood.com/agronomics/efu/nitrogen.pdf (2009).

  • 112.

    Garzio-Hadzick, A. M. Experimental nitrogen deposition influences microbial denitrifying communities and increases denitrification rates in a Northern Hardwood Forest. M.Sc. Thesis, Submitted to the University of Michigan (2012).

  • 113.

    Firestone, M. K., Firestone, R. B. & Tiedje, J. M. Nitrous oxide from soil denitrification: factors controlling its biological production. Science 208, 749–751. https://doi.org/10.1126/science.208.4445.749 (1980).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 114.

    Weier, K. L., Doran, J. W., Power, J. F. & Walters, D. T. Denitrification and the dinitrogen/nitrous oxide ratio as affected by soil water, available carbon, and nitrate. Soil Sci. Soc. Am. J. 57, 66–72. https://doi.org/10.2136/sssaj1993.03615995005700010013x (1993).

    ADS  CAS  Article  Google Scholar 

  • 115.

    Alcoz, M. M., Hons, F. M. & Haby, V. A. Nitrogen fertilization timing effect on wheat production, nitrogen uptake efficiency, and residual soil nitrogen. Agron. J. 85, 1198–1203. https://doi.org/10.2134/agronj1993.00021962008500060020x (1993).

    Article  Google Scholar 

  • 116.

    Jemison, J. M. & Fox, R. H. Nitrate leaching from nitrogen-fertilized and manured corn measured with zero-tension pan lysimeters. J. Environ. Qual. 23, 337–343. https://doi.org/10.2134/jeq1994.00472425002300020018x (1994).

    Article  Google Scholar 

  • 117.

    Andraski, T. W., Bundy, L. G. & Brye, K. R. Crop management and corn nitrogen rate effects on nitrate leaching. J. Environ. Qual. 29, 1095–1103. https://doi.org/10.2134/jeq2000.00472425002900040009x (2000).

    CAS  Article  Google Scholar 

  • 118.

    Hahne, H. C. H., Kroontje, W. & Lutz, J. A. Nitrogen fertilization I. Nitrate accumulation and losses under continuous corn cropping 1. Soil Sci. Soc. Am. J. 41, 562. https://doi.org/10.2136/sssaj1977.03615995004100030028x (1977).

    ADS  CAS  Article  Google Scholar 

  • 119.

    Jolley, V. D. & Pierre, W. H. Profile accumulation of fertilizer-derived nitrate and total nitrogen recovery in two long-term nitrogen-rate experiments with corn 1. Soil Sci. Soc. Am. J. 41, 373–378. https://doi.org/10.2136/sssaj1977.03615995004100020041x (1977).

    ADS  CAS  Article  Google Scholar 

  • 120.

    Hartmann, T. E. et al. Nitrogen dynamics, apparent mineralization and balance calculations in a maize–wheat double cropping system of the North China Plain. Field Crops Res. 160, 22–30. https://doi.org/10.1016/j.fcr.2014.02.014 (2014).

    Article  Google Scholar 

  • 121.

    Yang, S., Wang, Y., Liu, R., Zhang, A. & Yang, Z. Effect of nitrate leaching caused by swine manure application in fields of the yellow river irrigation zone of Ningxia, China. . Sci. Rep. 7, 13693. https://doi.org/10.1038/s41598-017-12953-9 (2017).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 122.

    Ghaly, A. E. & Ramakrishnan, V. V. Nitrogen sources and cycling in the ecosystem and its role in air, water and soil pollution: a critical review. J. Pollut. Effects Control 27, 1–26. https://doi.org/10.4172/2375-4397.1000136 (2015).

    Article  Google Scholar 

  • 123.

    Katzensteiner, K., Glatzel, G. & Kazda, M. Nitrogen-induced nutritional imbalances—a contributing factor to Norway spruce decline in the Bohemian Forest (Austria). For. Ecol. Manag. 51, 29–42. https://doi.org/10.1016/0378-1127(92)90469-P (1992).

    Article  Google Scholar 

  • 124.

    Shrawat, A. K., Carroll, R. T., Depauw, M., Taylor, G. T. & Good, A. G. Genetic engineering of improved nitrogen use efficiency in rice by the tissue-specific expression of alanine aminotransferase. Plant Biotechnol. J. 6, 722–732. https://doi.org/10.1111/j.1467-7652.2008.00351.x (2008).

    CAS  Article  PubMed  Google Scholar 


  • Source: Ecology - nature.com

    Transition to tall evergreens

    Characterization of the phenotypic and genotypic tolerance to abiotic stresses of natural populations of Heterorhabditis bacteriophora