in

Effects of biochar and crop straws on the bioavailability of cadmium in contaminated soil

  • 1.

    Xuan, B., Wang, J., Duan, Z. B., Wang, K. & An, J. P. Review on contamination and remediation technology of heavy metal in agricultural soil. Advances in Environmental Protection. 7(1), 26–34 (2017).

    Google Scholar 

  • 2.

    Tang, C. L., Sun, P. F., Yang, J. L., Huang, Y. P. & Wu, Y. H. Kinetics simulation of Cu and Cd removal and the microbial community adaptation in a periphytic biofilm reactor. Bioresource Technology. 276, 199–203 (2019).

    CAS  PubMed  Google Scholar 

  • 3.

    Sonali, D., Manju, S., Anubhuti, G., Vibha, R. & Debasis, C. Toxicity and detoxification of heavy metals during plant growth and metabolism. Environmental Chemistry Letters. 16(4), 1169–1192 (2018).

    Google Scholar 

  • 4.

    Chen, L. et al. High cadmium adsorption on nanoscale zero-valent iron coated Eichhornia crassipes BC. Environmental Chemistry Letters. 17(1), 589–594 (2019).

    CAS  Google Scholar 

  • 5.

    Rohan, J. et al. Higher Cd adsorption on biogenic elemental selenium nanoparticles. Environmental Chemistry Letters. 14(3), 381–386 (2016).

    MathSciNet  Google Scholar 

  • 6.

    Sharma, S., Nagpal, A. K. & Kaur, I. Heavy metal contamination in soil, food crops and associated health risks for residents of Ropar wetland, Punjab, India and its environs. Food Chemistry. 255, 15–22 (2018).

    CAS  PubMed  Google Scholar 

  • 7.

    Ronzan, M. et al. Cadmium and arsenic affect root development in Oryza sativa L. negatively interacting with auxin. Environ Exp Bot. 151, 64–75 (2018).

    CAS  Google Scholar 

  • 8.

    Xu, L. et al. Adaption and restoration of anammox biomass to Cd (II) stress: Performance, extracellular polymeric substance and microbial community. Bioresource Technology. 290, 121766 (2019).

    CAS  PubMed  Google Scholar 

  • 9.

    Adams, M. L., Zhao, F. J., McGrath, S. P., Nicholson, F. A. & Chambers, B. J. Predicting cadmium concentrations in wheat and barley grain using soil properties. J. Environ. Qual. 33(2), 532–541 (2004).

    CAS  PubMed  Google Scholar 

  • 10.

    Rahimzadeh, M. R., Kazemi, S. & Moghadamnia, A. A. Cadmium toxicity and treatment: an update Casp. J. Intern. Med. 8(3), 135–145 (2017).

    Google Scholar 

  • 11.

    Nagajyoti, P. C., Lee, K. D. & Sreekanth, T. V. M. Heavy metals, occurrence and toxicity for plants: a review. Environmental Chemistry Letters. 8(3), 199–216 (2010).

    CAS  Google Scholar 

  • 12.

    Vassilev, A., Tsonev, T. & Yordanov, I. Physiological response of barley plants (Hordeum vulgare) to cadmium contamination in soil during ontogenesis. Environ. Pollut. 103(2–3), 287–293 (1998).

    CAS  Google Scholar 

  • 13.

    Jones, R., Lapp, T. & Wallace. D. Locating and Estimating Air Emissions from Sources of Cadmium and Cadmium Compounds. Office of Air and Radiation Report Prepared by Midwest Research Institute for the US Environmental Protection Agency. EPA-453/R-93-040 (1993).

  • 14.

    Liu, J. G. et al. Correlations between cadmium and mineral nutrients in absorption and accumulation in various genotypes of rice under cadmium stress. Chemosphere. 52, 1467–1473 (2003).

    ADS  CAS  PubMed  Google Scholar 

  • 15.

    White, P. J. & Brown, P. H. Plant nutrition for sustainable development and global health. Ann. Bot. 105, 1073–1080 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 16.

    Pietrini, F., Iannelli, M. A., Pasqualini, S. & Massacci, A. Interaction of cadmium with glutathione and photosynthesis in developing leaves and chloroplasts of Phragmites australis (Cav.) Trin. Ex Steudel. Plant Physiol. 133, 829–837 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 17.

    Li, Y., Pang, H., He, L., Wang, Q. & Sheng, X. Cd immobilization and reduced tissue Cd accumulation of rice (Oryza sativa wuyun-23) in the presence of heavy metal-resistant bacteria. Ecotoxicol. Environ. Saf. 138, 56–63 (2017).

    CAS  PubMed  Google Scholar 

  • 18.

    Ashraf, U. et al. Alterations in growth, oxidative damage, and metal uptake of five aromatic rice cultiv0ars under lead toxicity. Plant Physiol. Biochem. 115, 461–471 (2017).

    CAS  PubMed  Google Scholar 

  • 19.

    Khan, M. I. R., Nazir, F., Asgher, M., Per, T. S. & Khan, N. A. Selenium and sulfur influence ethylene formation and alleviate cadmium-induced oxidative stress by improving proline and glutathione production in wheat. J. Plant Physiol. 173, 9–18 (2015).

    CAS  PubMed  Google Scholar 

  • 20.

    Pereira, L. S. et al. Cadmium induced changes in Solidago chilensis Meyen (Asteraceae) grown on organically fertilized soil with reference to mycorrhizae, metabolism, anatomy and ultrastructure. Ecotoxicol. Environ. Saf. 150, 76–85 (2018).

    CAS  PubMed  Google Scholar 

  • 21.

    Daud, M. K., Quiling, H., Lei, M., Ali, B. & Zhu, S. J. Ultrastructural, metabolic and proteomic changes in leaves of upland cotton in response to cadmium stress. Chemosphere 120, 309–320 (2015).

    ADS  CAS  PubMed  Google Scholar 

  • 22.

    Kaplan, O., Ince, M. & Yaman, M. Sequential extraction of cadmium in different soil phases and plant parts from a fromer industrialized area. Environmental Chemistry Letters. 9(3), 397–404 (2011).

    CAS  Google Scholar 

  • 23.

    Lin, L. J. et al. Effects of living hyperaccumulator plants and their straws on the growth and cadmium accumulation of cyphomandra betacea seedlings. Ecotoxicol. Environ. Saf. 155, 109–116 (2018).

    ADS  CAS  PubMed  Google Scholar 

  • 24.

    Kasak, K. et al. Biochar enhances plant growth and nutrient removal in horizontal subsurface flow constructed wetlands. Science of the Total Environment. 639, 67–74 (2018).

    ADS  CAS  PubMed  Google Scholar 

  • 25.

    Bashir, S., Zhu, J., Fu, Q. L. & Hu, H. Q. Cadmium mobility, uptake and anti-oxidative response of water spinach (Ipomoea Aquatic) under rice straw biochar, zeolite and rock phosphate as amendments. Chemosphere. 194, 579–587 (2018).

    ADS  CAS  PubMed  Google Scholar 

  • 26.

    Jeffery, S. et al. The way forward in biochar research: targeting trade-offs between the potential wins. GCB Bioenergy. 7, 1–13 (2015).

    CAS  Google Scholar 

  • 27.

    Mahar, A., Wang, P., Li, R. H. & Zhang, Z. Q. Immobilization of lead and cadmium in contaminated soil using amendments: a review. Pedosphere. 25(4), 555–568 (2015).

    CAS  Google Scholar 

  • 28.

    Mandal, S. et al. Designing advanced BC products for maximizing greenhouse gas mitigation potential. Environ. Sci. Technol. 46, 1367–1401 (2016).

    CAS  Google Scholar 

  • 29.

    Ahmad, M. et al. BC as a sorbent for contaminant management in soil and water: a review. Chemosphere. 99, 19–33 (2014b).

    ADS  CAS  PubMed  Google Scholar 

  • 30.

    Qi, F. J. et al. Pyrogenic carbon and its role in contaminant immobilization in soils. Crit. Rev. Environ. Sci. Technol. 47(10), 795–876 (2017).

    CAS  Google Scholar 

  • 31.

    Zhang, M. et al. BC reduces cadmium accumulation in rice grains in a tungsten mining area-field experiment: effects of BC type and dosage, rice variety, and pollution level. Environmental Geochemistry and Health. 41(1), 43–52 (2019).

    CAS  PubMed  Google Scholar 

  • 32.

    Cui, L., Noerpel, M. R., Scheckel, K. G. & Ippolito, J. A. Wheat straw biochar reduces environmental cadmium bioavailability. Environ. Int. 126, 69–75 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 33.

    Bashir, S. et al. Sugarcane bagasse-derived biochar reduces the cadmium and chromium bioavailability to mash bean and enhances the microbial activity in contaminated soil. Journal of Soil and Sediments. 18(3), 874–886 (2018).

    CAS  Google Scholar 

  • 34.

    Puga, A. P., Melo, L. C. A., de Abreu, C. A., Coscione, A. R. & Paz-Ferreiro, J. Leaching and fractionation of heavy metals in mining soils amended with BC. Soil. Till. Res. 164, 25–33 (2016).

    Google Scholar 

  • 35.

    Bi, Y. Y. Study on straw resources evaluation and utilization in China. Beijing, Chinese Academy of Agricultural Science (2010).

  • 36.

    Kim, H. B. et al. Effect of dissolved organic carbon from sludge, rice straw and spent coffee ground BC on the mobility of arsenic in soil. Science of the Total Environment. 636, 1241–1248 (2018).

    ADS  CAS  PubMed  Google Scholar 

  • 37.

    Xu, P. et al. The effect of biochar and crow straws on heavy metal bioavailability and plant accumulation in a Cd and Pb polluted soil. Ecotoxicol Environ Saf. 132, 94–100 (2016).

    CAS  PubMed  Google Scholar 

  • 38.

    Christou, A., Theologides, C. P., Coasta, C., Kalavrouziotis, I. K. & Varnavas, S. P. Assessment of toxic heavy metals concentrations in soils and wild and cultivated plants species in Limni abandoned copper mining site, Cyprus. J. Geochem. Explor. 178, 16–22 (2017).

    CAS  Google Scholar 

  • 39.

    Bell, M. J., Mclaughlin, M. J., Wright, G. C. & Cruickshank, A. Inter and intra-specific variation in accumulation of cadmium by peanut, soybean, and navybean. Australian Journal of Agricultural Research. 48(8), 1151–1160 (1997).

    CAS  Google Scholar 

  • 40.

    Wang, Y. Y., Gao, B., Zhang, J. L. & Li, X. D. Effects of different sulfur application rates on physiological characteristics, yield and quality of peanut. Shandong Agricultural Sciences. 46(12), 67–71 (2014).

    CAS  Google Scholar 

  • 41.

    Gong, Z. T. Chinese soil taxonomic: theory approaches and application (ed. Chen, P. L.) 1–903 (Science Press, 1999).

  • 42.

    Bao, S. D. Soil agro-chemistrical analysis (ed. Bao, S.) 1–495 (China Agriculture Press, 2000).

  • 43.

    Li, Z. Y., Zheng, L., Lu, L. H. & Li, L. L. Improvement in the H2SO4-H2O2 Digestion Method for Determining Plant Total Nitrogen. Chinese Agricultural Science Bulletin. 30(6), 159–162 (2014).

    Google Scholar 

  • 44.

    Tessier, A., Campbell, P. G. & Bisson, M. Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem. 51, 844–851 (1979).

    CAS  Google Scholar 

  • 45.

    Science of Plant Physiology and Ecology, SIBS, CAS. Modern Plant Physiology Experimental Guidelines (ed. Tang, Z. C.) 1–415 (Science Press, 1999).

  • 46.

    Huang, J. Y. Impact mechanism of straw returning on cadmium speciation and bioavailability of soils in tongling mining area. PhD diss. Hefei. Hefei University of Technology (2013).

  • 47.

    Li, S., Barreto, V., Li, R., Chen, G. & Hsieh, Y. P. Nitrogen retention of biochar derived from different feedstocks at variable pyrolysis temperatures. J. Anal Appl. Pyrolysis. 133, 136–146 (2018).

    CAS  Google Scholar 

  • 48.

    Pocknee, S. & Sumner, M. E. Cation and notrogen contents of organic matter determine its soil liming potential. Soil Sci. Soc. Am. J. 61, 86–92 (1997).

    ADS  CAS  Google Scholar 

  • 49.

    Noble, A. D., Zenneck, I. & Randall, P. J. Leaf litter ash alkalinity and neutralization of soil acidity. Plant Soil. 179, 293–302 (1996).

    CAS  Google Scholar 

  • 50.

    Bashir, S. et al. Efficiency of C3 and C4 plant derived-biochar for Cd mobility, nutrient cycling and microbial biomass in contaminated soil. Bulletin of Environmental Contamination and Toxicology. 100(6), 834–838 (2018).

    CAS  PubMed  Google Scholar 

  • 51.

    Masud, M. M., Li, J. Y. & Xu, R. K. Use of alkaline slag and crop residue biochars to promote base saturation and reduce acidity of an acidic ultisol. Pedosphere. 24, 791–798 (2014).

    Google Scholar 

  • 52.

    Wang, L. et al. Effect of crop residue biochar on soil acidity amelioration in strongly acidic tea garden soils. Soil Use Manag. 30, 119–128 (2014).

    CAS  Google Scholar 

  • 53.

    Yan, F., Schubert, S. & Mengel, K. Soil pH increase due to biological decarboxylation of organic anions. Soil Biol & Biochem. 28, 17–24 (1996).

    Google Scholar 

  • 54.

    Yuan, J. H., Xu, R. K., Qian, W. & Wang, R. H. Comparison of the ameliorating effects on an acidic ultisol between four crow straws and their biochars. Journal of Soils and Sediments. 11(5), 741–750 (2011).

    CAS  Google Scholar 

  • 55.

    Wang, G. M. & Zhou, L. X. The dynamics of dissolved organic matter and associated water-soluble Cu in two Cu-contaminated soils amended with various organic matters. Acta Scientiae Circumstantiae. 23(4), 453–456 (2003).

    ADS  Google Scholar 

  • 56.

    Zhu, L., Wu, J., Zhou, J. M., Chen, H. L. & Tang, D. M. Effect of dissolved organic matter on sorption-desorption behavior of copper in soil. Journal of Agro-Environment Science. 27(5), 1779–1785 (2008).

    CAS  Google Scholar 

  • 57.

    Chen, T. B. & Chen, Z. J. Cadmium adsorption in soil influenced by dissolved organic matter derived from rice straw and sediment. Chinese Journal Of Applied Ecology. 13(2), 183–186 (2002).

    CAS  PubMed  Google Scholar 

  • 58.

    Liu, G. S., Xu, Z. J., Zhou, G. D. & Liu, W. P. Studies on the character and rule of cadmium release from red soils under the action of acid rain. China Environmental Science. 24(4), 419–423 (2004).

    CAS  Google Scholar 

  • 59.

    Zhou, H. J. et al. Effects of biochar on Cd forms in red soil and cinnamon soil. Journal of Plant Nutrition and Fertilizers. 25(3), 433–442 (2019).

    Google Scholar 

  • 60.

    Li, H. B. et al. Mechanisms of metal sorption by biochars: biochar characteristics and modifications. Chemosphere. 178, 466–478 (2017).

    ADS  CAS  PubMed  Google Scholar 

  • 61.

    Qian, L. B. et al. Effective removal of heavy metal by biochar colloids under different pyrolysis temperatures. Bioresour. Technol. 206, 217–224 (2016).

    CAS  PubMed  Google Scholar 

  • 62.

    Gao, J. K., Lv, J. L., Wu, H. M., Dai, Y. C. & Nasir, M. Impacts of wheat straw addition on dissolved organic matter characteristics in cadmium-contaminated soils: insights from fluorescence spectroscopy and environmental implications. Chemosphere. 193, 1027–1035 (2017).

    ADS  PubMed  Google Scholar 

  • 63.

    Mohamed, I. et al. Fractionation of copper and cadmium and their binding with soil organic matter in a contaminated soil amended with organic materials. J. Soil Sediment. 10(6), 973–982 (2010).

    CAS  Google Scholar 

  • 64.

    Li, H. B. et al. Mechanisms of metal sorption by biochars: Biochar characteristics and modifications. Chemosphere. 178, 466–478 (2017).

    ADS  CAS  PubMed  Google Scholar 

  • 65.

    Zeng, L. P., Lin, X. K., Zhou, F., Qin, J. H. & Li, H. S. Biochar and crushed straw additions affect cadmium absorption in cassava-peanut intercropping system. Ecotoxicol Environ Saf. 167, 520–530 (2019).

    CAS  PubMed  Google Scholar 

  • 66.

    Shaheen, S. M. & Rinklebe, J. Impact of emerging and low cost alternative amendments on the (im) mobilization and phytoavailability of Cd and Pb in a contaminated floodplain soil. Ecol. Eng. 74, 319–326 (2015).

    Google Scholar 

  • 67.

    Bian, R. et al. Biochar soil amendment as a solution to prevent Cd-tainted rice from China: results from a cross-site field experiment. Ecol. Eng. 58, 378–383 (2013).

    Google Scholar 

  • 68.

    Yousaf, B. et al. Investigating the potential influence of biochar and traditional organic amendments on the bioavailability and transfer of Cd in the soil–plant system. Environ. Earth Sci. 75, 1–10 (2016).

    CAS  Google Scholar 

  • 69.

    Younis, U. et al. Biochar enhances the cadmium tolerance in spinach (Spinacia oleracea) through modification of Cd uptake and physiological and biochemical attributes. Environ. Sci. Pollut. Res. 23, 21385–21394 (2016).

    CAS  Google Scholar 

  • 70.

    Lu, K. P. et al. Effect of bamboo and RS biochars on the mobility and redistribution of heavy metals (Cd, Cu, Pb and Zn) in contaminated soil. J. Environ. Manag. 186, 285–292 (2017).

    CAS  Google Scholar 

  • 71.

    Wang, S. et al. Speciation and phytoavailability of cadmium in soil treated with cadmium-contaminated RS. Environ Sci Pollut Res. 22, 2679–2686 (2015).

    CAS  Google Scholar 

  • 72.

    Xu, P. et al. The effect of biochar and crow straws on heavy metal bioavailability and plant accumulation in a Cd and Pb polluted soil. 2016. Ecotoxicol Environ Saf. 132, 94–100 (2016).

    CAS  PubMed  Google Scholar 

  • 73.

    Tang, W. L. et al. Inhibitory effects of rice residues amendment on Cd phytoavailability: a matter of Cd-organic matter interactions? Chemosphere. 186, 227–234 (2017).

    ADS  CAS  PubMed  Google Scholar 

  • 74.

    Ok, Y. S. et al. Effects of rapeseed residue on lead and cadmium availability and uptake by rice plants in heavy metal contaminated paddy soil. Chemosphere. 85, 677–682 (2011).

    ADS  CAS  PubMed  Google Scholar 

  • 75.

    Rizwan, M., Meunier, J. D., Hélène, M. & Keller, C. Effect of silicon on reducing cadmium toxicity in durum wheat (Triticum turgidum L. cv. Claudio W.) grown in a soil with aged contamination. J. Hazard. Mater. 209–210, 326–334 (2012).

    PubMed  Google Scholar 

  • 76.

    Rizwan, R. et al. Exogenous proline and glycinebetaine mitigate cadmium stress in two genetically different spring wheat (Triticum aestivum L.) cultivars. Braz. J. Bot. 37(4), 399–406 (2014).

    Google Scholar 

  • 77.

    Borchard, N., Siemens, J., Ladd, B., Möller, A. & Amelung, W. Application of biochars to sandy and silty soil failed to increase maize yield under common agricultural practice. Soil and Tillage Research. 144, 184–194 (2014).

    Google Scholar 

  • 78.

    Jones, D. L., Rousk, J., Edwards-Jones, G., DeLuca, T. H. & Murphy, D. V. Biochar-mediated changes in soil quality and plant growth in a three-year field trial. Soil Biology and Biochemistry. 45, 113–124 (2012).

    CAS  Google Scholar 


  • Source: Ecology - nature.com

    A layered approach to safety

    Tiny sand grains trigger massive glacial surges