in

Effects of nitrogen additions on mesophyll and stomatal conductance in Manchurian ash and Mongolian oak

  • 1.

    Yamori, W., Nagai, T. & Makino, A. The rate-limiting step for CO2 assimilation at different temperatures is influenced by the leaf nitrogen content in several C3 crop species. Plant. Cell Env. 34, 764–777 (2011).

    CAS  Google Scholar 

  • 2.

    Zhang, W. F. et al. Effect of nitrogen on canopy photosynthesis and yield formation in high-yielding cotton of Xinjiang. Acta Agronomica Sin. 28, 789–796 (2002).

    Google Scholar 

  • 3.

    Wang, D., Yu, Z. W., Li, Y. Q., Shi, G. P. Effects of nitrogen fertilizer rate on photosynthetic character, sucrose synthesis in flag leaves and grain yield of strong gluten wheat Jimai 20. Acta Agronomica Sinica 903–908 (2007).

  • 4.

    Holland, E. A., Dentener, F. J., Braswell, B. H. & Sulzman, J. M. Contemporary and pre-industrial global reactive nitrogen budget. Biogeochemistry 46, 7–43 (1999).

    CAS  Google Scholar 

  • 5.

    Dore, M. H. I. Climate change and changes in global precipitation patterns: What do we know? Environ. Int. 31, 1167–81 (2005).

    PubMed  Google Scholar 

  • 6.

    Li, Y. et al. Light-saturated photosynthetic rate in high-nitrogen rice (Oryza sativa L.) leaves is related to chloroplastic CO2 concentration. J. Exp. Bot. 8, 2351–2360 (2009).

    Google Scholar 

  • 7.

    Li, Y. et al. Chloroplast downsizing under nitrate nutrition restrained mesophyll conductance and photosynthesis in rice (Oryza sativa L.) under drought conditions. Plant. Cell Physiol. 53, 892–900 (2012).

    CAS  PubMed  Google Scholar 

  • 8.

    Flexas, J. et al. Stomatal and mesophyll conductances to CO2 in different plant groups: Underrated factors for predicting leaf photosynthesis responses to climate change? Plant. Sci. 226, 41–48 (2014).

    CAS  PubMed  Google Scholar 

  • 9.

    Centritto, M., Loreto, F. & Chartzoulakis, K. The use of low [CO2] to estimate diffusional and non-diffusional limitations of photosynthetic capacity of salt-stressed olive sap lings. Plant. Cell Env. 26, 585–594 (2003).

    Google Scholar 

  • 10.

    Flexas, J. et al. Mesophyll conductance to CO2: current knowledge and future rospects. Plant. Cell Env. 31, 602–621 (2008).

    CAS  Google Scholar 

  • 11.

    Oguchi, R., Hikosaka, K. & Hirose, T. Leaf anatomy as a constraint for photosynthetic acclimation: differential responses in leaf anatomy to increasing growth irradiance among three deciduous trees. Plant. Cell Env. 29, 916–927 (2005).

    Google Scholar 

  • 12.

    Lundgren, C. Cell wall thickness and tangential and radial cell diameter of fertilized and irrigated Norway spruce. Silva Fenn. 38, 95–106 (2004).

    Google Scholar 

  • 13.

    Muller, O. et al. The leaf anatomy of a broad-leaved evergreen allows an increase in leaf nitrogen content in winter. Physiol. Plant. 136, 299–309 (2009).

    ADS  CAS  PubMed  Google Scholar 

  • 14.

    Xiong, D. L. et al. Rapid responses of mesophyll conductance to changes of CO2 concentration, temperature and irradiance are affected by N supplements in rice. Plant. Cell Env. 38, 2541–2550 (2015).

    CAS  Google Scholar 

  • 15.

    Li, F. S., Kang, S. Z. & Zhang, J. H. Interactive effects of elevated CO2, nitrogen and drought on leaf area, stomatal conductance, and evapotranspiration of wheat. Agr. Water Manage. 67, 221–233 (2004).

    Google Scholar 

  • 16.

    Liu, Z. & Dickmann, D. I. Effects of water and nitrogen interaction on net photosynthesis, stomatal conductance, and water use-efficiency in two hybrid poplar clones. Physiol. Plant. 97, 507–512 (2006).

    Google Scholar 

  • 17.

    Eller, F., Jensen, K. & Reisdorff, C. Nighttime stomatal conductance differs with nutrient availability in two temperate floodplain tree species. Tree Physiol. 37, 428–440 (2017).

    CAS  PubMed  Google Scholar 

  • 18.

    Kong, L. A., Xie, Y., Hu, L., Si, J. S. & Wang, Z. S. Excessive nitrogen application dampens antioxidant capacity and grain filling in wheat as revealed by metabolic and physiological analyses. Sci. Rep. 7, 43363 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 19.

    Sperling, O. et al. Excessive nitrogen impairs hydraulics, limits photosynthesis, and alters the metabolic composition of almond trees. Plant. Physiol. Bioch 143, 265–274 (2019).

    CAS  Google Scholar 

  • 20.

    Wang, D., Xu, Z., Zhao, J., Wang, Y. & Yu, Z. Excessive nitrogen application decreases grain yield and increases nitrogen loss in a wheat-soil system. Acta Agr. Scand. B – S. P 61, 681–692 (2011).

    Google Scholar 

  • 21.

    Miyazawa, S. I. et al. Deactivation of aquaporins decreases internal conductance to CO2 diffusion in tobacco leaves grown under long-term drought. Funct. Plant. Biol. 35, 553–564 (2008).

    CAS  Google Scholar 

  • 22.

    Uehlein, N. et al. Function of Nicotiana tabacum aquaporins as chloroplast gas pores challenges the concept of membrane CO2 permeability. Plant. Cell 20, 648–657 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 23.

    Scafaro, A. P., Von Caemmerer, S., Evans, J. R. & Atwell, B. J. Temperature response of mesophyll conductance in cultivated and wild Oryza species with contrasting mesophyll cell wall thickness. Plant. Cell Env. 34, 1999–2008 (2011).

    CAS  Google Scholar 

  • 24.

    Terashima, I., Hanba, Y. T., Tholen, D. & Niinemets, Ü. Leaf functional anatomy in relation to photosynthesis. Plant. Physiol. 155, 108–116 (2011).

    CAS  PubMed  Google Scholar 

  • 25.

    Peguero-Pina, J. J. et al. Leaf anatomical properties in relation to differences in mesophyll conductance to CO2 and photosynthesis in two related Mediterranean Abies species. Plant. Cell Env. 35, 2121–2129 (2012).

    CAS  Google Scholar 

  • 26.

    Tomás, M. et al. Importance of leaf anatomy in determining mesophyll diffusion conductance to CO2 across species: quantitative limitations and scaling up by models. J. Exp. Bot. 64, 2269–2281 (2013).

    PubMed  PubMed Central  Google Scholar 

  • 27.

    Muir, C. D., Hangarter, R. P., Moyle, L. C. & Davis, P. A. Morphological and anatomical determinants of mesophyll conductance in wild relatives of tomato (Solanum sect. Lycopersicon, sect. Lycopersicoides; Solanaceae). Plant. Cell Env. 37, 1415–1426 (2014).

    CAS  Google Scholar 

  • 28.

    Perez-Martin, A. et al. Regulation of photosynthesis and stomatal and mesophyll conductance under water stress and recovery in olive trees: correlation with gene expression of carbonic anhydrase and aquaporins. J. Exp. Bot. 65, 3143–3156 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 29.

    Xiong, D. L. et al. Leaf anatomy mediates coordination of leaf hydraulic conductance and mesophyll conductance to CO2 in Oryza. N. Phytolo 213, 572–583 (2017).

    CAS  Google Scholar 

  • 30.

    Zhu, K. et al. Effects of soil rewatering on mesophyll and stomatal conductance and the associated mechanisms involving leaf anatomy and some physiological activities in Manchurian ash and Mongolian oak in the Changbai Mountains. Plant. Physiol. Bioch 144, 22–34 (2019).

    CAS  Google Scholar 

  • 31.

    Xu, Z. Z. & Zhou, G. S. Responses of leaf stomatal density to water status and its relationship with photosynthesis in a grass. J. Exp. Bot. 59, 3317–3325 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 32.

    Uehlein, N., Lovisolo, C., Siefritz, F. & Kaldenhoff, R. The tobacco aquaporin NtAQP1 is a membrane CO2 pore with physiological functions. Nature 425, 734–737 (2003).

    ADS  CAS  PubMed  Google Scholar 

  • 33.

    Flexas, J. et al. Keeping a positive carbon balance under adverse conditions: responses of photosynthesis and respiration to water stress. Physiol. Plant. 127, 343–352 (2006).

    CAS  Google Scholar 

  • 34.

    Perez-Martin, A. et al. Physiological and genetic response of olive leaves to water stress and recovery: implications of mesophyll conductance and genetic expression of aquaporins and carbonic anhydrase. Acta Horticulturae 922, 99–105 (2011).

    Google Scholar 

  • 35.

    Genty, B., Briantais, J. M. & Baker, N. R. The relationship between the quantum yield of photosynthetic electron-transport and quenching of chlorophyll fluorescence. Biochimica et. Biophysica Acta 990, 87–92 (1989).

    CAS  Google Scholar 

  • 36.

    Valentini, R. et al. In situ estimation of net CO2 assimilation, photosynthetic electron flow and photorespiration in Turkey oak (Q. cerris L.) leaves: diurnal cycles under different levels of water supply. Plant. Cell Env. 18, 631–640 (1995).

    CAS  Google Scholar 

  • 37.

    Harley, P. C., Loreto, F., Marco, G. D. & Sharkey, T. D. Theoretical Considerations when Estimating the Mesophyll Conductance to CO2 Flux by Analysis of the Response of Photosynthesis to CO2. Plant. Physiol. 98, 1429–1436 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 38.

    Laisk, A. Kh. Kinetics of Photosynthesis and Photorespiration of C3 Plants. Mccarthy (1977).

  • 39.

    Walker, B. J., Skabelund, D. C., Busch, F. A. & Ort, D. R. An improved approach for measuring the impact of multiple CO2 conductances on the apparent photorespiratory CO2 compensation point through slope-intercept regression. Plant. Cell Env. 39, 1198–1203 (2016).

    CAS  Google Scholar 

  • 40.

    Sun, J. W. et al. Day and night respiration of three tree species in a temperate forest of northeastern China. iForest. 8, 25–32 (2015).

    Google Scholar 

  • 41.

    von Caemmerer, S. & Farquhar, G. D. Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta 153, 376–387 (1981).

    Google Scholar 

  • 42.

    Evans, J. R., von Caemmerer, S., Setchell, B. A. & Hudson, G. S. The relationship between CO2 transfer conductance and leaf anatomy in tobacco transformed with a reduced content of Rubisco. Aust. J. Plant. Physiol. 21, 475–495 (1994).

    CAS  Google Scholar 

  • 43.

    Thain, J. F. Curvature correction factors in the measurement of cell surface areas in plant tissues. J. Exp. Bot. 34, 87–94 (1983).

    Google Scholar 

  • 44.

    Niinemets, Ü. & Reichstein, M. Controls on the emission of plant volatiles through stomata: a sensitivity analysis. J. Geophys. Res. 108, 4211 (2003).

    Google Scholar 

  • 45.

    Tosens, T., Niinemets, U., Vislap, V., Eichelmann, H. & Castro, D. P. Developmental changes in mesophyll diffusion conductance and photosynthetic capacity under different light and water availabilities in Populustremula: how structure constrains function. Plant. Cell Env. 35, 839–856 (2012).

    CAS  Google Scholar 

  • 46.

    Suárez, I., Salmerón-García, A., Cabeza, J., Capitán-Vallvey, L. F. & Navas, N. Development and use of specific ELISA methods for quantifying the biological activity of bevacizumab, cetuximab and trastuzumab in stability studies. J. Chromatogr. B 1032, 155–164 (2016).

    Google Scholar 

  • 47.

    Grierson, C., Miller, D., LaPan, P. & Brady, J. Utility of combining MMP-9 enzyme-linked immunosorbent assay and MMP-9 activity assay data to monitor plasma enzyme specific activity. Anal. Biochem. 404, 232–234 (2010).

    CAS  PubMed  Google Scholar 

  • 48.

    Haupt-Herting, S., Klug, K. & Fock, H. P. A new approach to measure gross CO2 fluxes in leaves. Gross CO2 assimilation, photorespiration, and mitochondrial respiration in the light in tomato under drought stress. Plant. Physiol. 126, 388–396 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 49.

    Loreto, F., Delfine, S. & Di Marco, G. Estimation of photorespiratory carbon dioxide recycling during photosynthesis. Funct. Plant. Biol. 26, 733–736 (1999).

    Google Scholar 

  • 50.

    Busch, F. A., Sage, T. L., Cousins, A. B. & Sage, R. F. C3 plants enhance rates of photosynthesis by reassimilating photorespired and respired CO2. Plant. Cell Environ. 36, 200–212 (2013).

    CAS  PubMed  Google Scholar 

  • 51.

    Tholen, D., Ethier, G., Genty, B., Pepin, S. & Zhu, X. G. Variable mesophyll conductance revisited: theoretical background and experimental implications. Plant. Cell Env. 35, 2087–2103 (2012).

    CAS  Google Scholar 

  • 52.

    Evans, J. R. Nitrogen and photosynthesis in the flag leaf of wheat (Triticum aestivum L.). Plant. Physiol. 72, 297–302 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 53.

    Joha, R. E. Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia 78, 9–19 (1989).

    Google Scholar 

  • 54.

    Makino, A., Nakano, H. & Mae, T. Responses of ribulose-1,5-bisphosphate carboxylase, cytochrome f, and sucrose synthesis enzymes to leaf nitrogen, and their relationships to photosynthesis. Plant. Physiol. 105, 173–179 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 55.

    Makino, A., Sato, T., Nakano, H. & Mae, T. Leaf photosynthesis, plant growth and nitrogen allocation in rice under different irradiances. Planta 203, 390–398 (1997).

    CAS  Google Scholar 

  • 56.

    Xiong, D. L. et al. Leaf hydraulic conductance is coordinated with leaf morpho-anatomical traits and nitrogen status in the genus Oryza. J. Exp. Bot. 66, 741–748 (2015).

    CAS  PubMed  Google Scholar 

  • 57.

    Kaldenhoff, R. et al. Aquaporins and plant water balance. Plant. Cell Env. 31, 658–666 (2008).

    CAS  Google Scholar 

  • 58.

    Clarkson, D. T. et al. Root hydraulic conductance: Diurnal aquaporin expression and the effects of nutrient stress. J. Exp. Bot. 51, 61–70 (2000).

    CAS  PubMed  Google Scholar 

  • 59.

    Hacke, U. G. et al. Influence of nitrogen fertilization on xylem traits and aquaporin expression in stems of hybrid poplar. Tree Physiol. 30, 1016–1025 (2010).

    CAS  PubMed  Google Scholar 

  • 60.

    Flexas, J. et al. Tobacco aquaporin NtAQP1 is involved in mesophyll conductance to CO2in vivo. Plant. J. 48, 427–439 (2006).

    CAS  PubMed  Google Scholar 

  • 61.

    Chartzoulakis, K., Patakas, A. & Kofidis, G. Water stress affects leaf anatomy, gas exchange, water relations and growth of two avocado cultivars. Sci. Hortic-Amsterdam 95, 39–50 (2002).

    CAS  Google Scholar 

  • 62.

    Onoda, Y. et al. Physiological and structural tradeoffs underlying the leaf economics spectrum. N. Phytol. 214, 1447–1463 (2017).

    CAS  Google Scholar 

  • 63.

    Han, J. M. et al. Mesophyll conductance in cotton bracts: anatomically determined internal CO2 diffusion constraints on photosynthesis. J. Exp. Bot. 69, 5433–5443 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 64.

    Hanba, Y. T. et al. Overexpression of the barley aquaporin HvPIP 2;1 increases internal CO2 conductance and CO2 assimilation in the leaves of transgenic rice plants. Plant. Cell Physiol. 45, 521–529 (2004).

    CAS  PubMed  Google Scholar 

  • 65.

    Peguero-Pina, J. J. et al. Leaf morphological and physiological adaptations of a deciduous oak (Quercus faginea Lam.) to the Mediterranean climate: a comparison with a closely related temperate species (Quercus robur L.). Tree Physiol. 36, 287–299 (2016).

    PubMed  Google Scholar 

  • 66.

    Nadal, M., Flexas, J. & Gulías, J. Possible link between photosynthesis and leaf modulus of elasticity among vascular plants: a new player in leaf traits relationships? Ecol. Lett. (2018).

  • 67.

    Nadal, M. & Flexas, J. Variation in photosynthetic characteristics with growth form in a water-limited scenario: Implications for assimilation rates and water use efficiency in crops. Agr. Water Manage. 216, 457–472 (2019).

    Google Scholar 

  • 68.

    Laza, R. C., Bergman, B. & Vergara, B. S. Cultivar differences in growth and chloroplast ultrastructure in rice as affected by nitrogen. J. Exp. Bot. 44, 1643–1648 (1993).

    CAS  Google Scholar 


  • Source: Ecology - nature.com

    Dimorphic flowers modify the visitation order of pollinators from male to female flowers

    Climate change will affect global water availability through compounding changes in seasonal precipitation and evaporation