
Creel, S. & Christianson, D. Relationships between direct predation and risk effects. Trends Ecol. Evol. 23, 194–201 (2008).
Creel, S. The control of risk hypothesis: reactive vs. proactive antipredator responses and stress-mediated vs. food-mediated costs of response. Ecol. Lett. 21, 947–956 (2018).
Stuart, Y. E. Divergent uses of “Parallel Evolution” during the history of The American Naturalist. Am. Nat. 193, 11–19 (2019).
Stern, D. L. & Orgogozo, V. Is genetic evolution predictable? Science. 323, 746–751 (2009).
Losos, J. B. Convergence, adaptation, and constraint. Evolution. 65, 1827–1840 (2011).
Bolnick, D. I., Barrett, R. D. H., Oke, K. B., Rennison, D. J. & Stuart, Y. E. (Non) Parallel Evolution. Annu. Rev. Ecol. Evol. Syst. 49, 303–330 (2018).
Langerhans, R. B. Predicting evolution with generalized models of divergent selection: A case study with poeciliid fish. Integr. Comp. Biol. 50, 1167–1184 (2010).
Foster, S. A. et al. Iterative development and the scope for plasticity: Contrasts among trait categories in an adaptive radiation. Heredity. 115, 335–348 (2015).
O’Steen, S., Cullum, A. J. & Bennett, A. Rapid evolution of escape ability in Trinidad guppies (Poecilia reticulata). Evolution. 56, 776–784 (2002).
Wund, M. A., Baker, J. A., Golub, J. L. & Foster, S. A. The evolution of antipredator behaviour following relaxed and reversed selection in Alaskan threespine stickleback fish. Anim. Behav. 106, 181–189 (2015).
Walsh, M. R. & Post, D. M. The impact of intraspecific variation in a fish predator on the evolution of phenotypic plasticity and investment in sex in Daphnia ambigua. J. Evol. Biol. 25, 80–89 (2012).
Moore, M. P., Riesch, R. & Martin, R. A. The predictability and magnitude of life-history divergence to ecological agents of selection: A meta-analysis in livebearing fishes. Ecol. Lett. 19, 435–442 (2016).
Romero, L. M. Physiological stress in ecology: lessons from biomedical research. Trends Ecol. Evol. 19, 249–255 (2004).
Taff, C. C. & Vitousek, M. N. Endocrine flexibility: optimizing phenotypes in a dynamic world? Trends Ecol. Evol. 31, 476–488 (2016).
Barton, B. A. Stress in Fishes: A diversity of responses with particular reference to changes in circulating corticosteroids. Integr. Comp. Biol. 42, 517–525 (2002).
Bell, A. M., Backström, T., Huntingford, F. A., Pottinger, T. G. & Winberg, S. Variable neuroendocrine responses to ecologically-relevant challenges in sticklebacks. Physiol. Behav. 91, 15–25 (2007).
Cockrem, J. F. & Silverin, B. Sight of a predator can stimulate a corticosterone response in the great tit (Parus major). Gen. Comp. Endocrinol. 125, 248–255 (2002).
Sheriff, M. J., Krebs, C. J. & Boonstra, R. The sensitive hare: Sublethal effects of predator stress on reproduction in snowshoe hares. J. Anim. Ecol. 78, 1249–1258 (2009).
Hammerschlag, N. et al. Physiological stress responses to natural variation in predation risk: evidence from white sharks and seals. Ecology 98, 3199–3210 (2017).
Creel, S., Winnie, J. A. J. & Christianson, D. Glucocorticoid stress hormones and the effect of predation risk on elk reproduction. Proc. Natl. Acad. Sci. 106, 12388–12393 (2009).
Fischer, E. K., Harris, R. M., Hofmann, H. A. & Hoke, K. L. Predator exposure alters stress physiology in guppies across timescales. Horm. Behav. 65, 165–172 (2014).
Archard, G. A., Earley, R. L., Hanninen, A. F. & Braithwaite, V. A. Correlated behaviour and stress physiology in fish exposed to different levels of predation pressure. Funct. Ecol. 26, 637–645 (2012).
McCormick, G. L., Robbins, T. R., Cavigelli, S. A. & Langkilde, T. Ancestry trumps experience: Transgenerational but not early life stress affects the adult physiological stress response. Horm. Behav. 87, 115–121 (2017).
Wingfield, J. C. et al. Ecological bases of hormone-behavior interactions: the ‘emergency life history stage’. Am. Zool. 38, 191–206 (1998).
Tilbrook, A. J., Turner, A. I. & Clarke, I. J. Effects of stress on reproduction in non-rodent mammals: the role of glucocorticoids and sex differences. Rev. Reprod. 5, 105–113 (2000).
Payne, A. H. & Hales, D. B. Overview of steroidogenic enzymes in the pathway from cholesterol to active steroid hormones. Endocr. Rev. 25, 947–970 (2004).
Chand, D. & Lovejoy, D. A. Stress and reproduction: Controversies and challenges. Gen. Comp. Endocrinol. 171, 253–257 (2011).
Leatherland, J. F., Li, M. & Barkataki, S. Stressors, glucocorticoids and ovarian function in teleosts. J. Fish Biol. 76, 86–111 (2010).
Lessells, C. M., Ruuskanen, S. & Schwabl, H. Yolk steroids in great tit Parus major eggs: variation and covariation between hormones and with environmental and parental factors. Behav. Ecol. Sociobiol. 70, 843–856 (2016).
Love, O. P., Mcgowan, P. O. & Sheriff, M. J. Maternal adversity and ecological stressors in natural populations: The role of stress axis programming in individuals, with implications for populations and communities. Funct. Ecol. 27, 81–92 (2013).
Harris, A. & Seckl, J. Glucocorticoids, prenatal stress and the programming of disease. Horm. Behav. 59, 279–289 (2011).
Sheriff, M. J. & Love, O. P. Determining the adaptive potential of maternal stress. Ecol. Lett. 16, 271–280 (2013).
Maccari, S., Krugers, H. J., Morley-Fletcher, S., Szyf, M. & Brunton, P. J. The consequences of early-life adversity: neurobiological, behavioural and epigenetic adaptations. J. Neuroendocrinol. 26, 707–723 (2014).
Henriksen, R., Rettenbacher, S. & Groothuis, T. G. G. Prenatal stress in birds: Pathways, effects, function and perspectives. Neurosci. Biobehav. Rev. 35, 1484–1501 (2011).
Sopinka, N. M., Capelle, P. M., Semeniuk, C. A. D. & Love, O. P. Glucocorticoids in fish eggs: variation, interactions with the environment, and the potential to shape offspring fitness. Physiol. Biochem. Zool. 90, 15–33 (2017).
Moisiadis, V. G. & Matthews, S. G. Glucocorticoids and fetal programming part 2: mechanisms. Nat. Rev. Endocrinol. 10, 403–11 (2014).
Podmokła, E., Drobniak, S. M. & Rutkowska, J. Chicken or egg? Outcomes of experimental manipulations of maternally transmitted hormones depend on administration method – a meta-analysis. Biol. Rev. 93, 1499–1517 (2018).
Cottrell, E. C., Holmes, M. C., Livingstone, D. E., Kenyon, C. J. & Seckl, J. R. Reconciling the nutritional and glucocorticoid hypotheses of fetal programming. FASEB J. 26, 1866–1874 (2012).
Coslovsky, M., Groothuis, T., de Vries, B. & Richner, H. Maternal steroids in egg yolk as a pathway to translate predation risk to offspring: Experiments with great tits. Gen. Comp. Endocrinol. 176, 211–214 (2012).
Bell, M. A. & Foster, S. A. Introduction to the evolutionary biology of the threespine stickleback. In The Evolutionary Biology of the Threespine Stickleback (eds. Bell, M. A. & Foster, S. A.) 1–26 (Oxford University Press, 1994).
Peichel, C. L. & Marques, D. A. The genetic and molecular architecture of phenotypic diversity in sticklebacks. Philos. Trans. R. Soc. B Biol. Sci. 372 (2017).
Stuart, Y. E. et al. Contrasting effects of environment and genetics generate a continuum of parallel evolution. Nat. Ecol. Evol. 1, 1–7 (2017).
Reznick, D. N., Losos, J. & Travis, J. From low to high gear: there has been a paradigm shift in our understanding of evolution. Ecol. Lett. 22, 233–244 (2019).
Bell, M. A., Aguirre, W. E. & Buck, N. J. Twelve years of contemporary armor evolution in a Threespine Stickleback population. Evolution (N. Y). 58, 814–824 (2004).
Soldin, S. J. & Soldin, O. P. Steroid hormone analysis by tandem mass spectrometry. Clin. Chem. 55, 1061–1066 (2009).
Hill, M. et al. Steroid metabolome in fetal and maternal body fluids in human late pregnancy. J. Steroid Biochem. Mol. Biol. 122, 114–132 (2010).
Adams, D. C. & Collyer, M. L. A general framework for the analysis of phenotypic trajectories in evolutionary studies. Evolution. 63, 1143–1154 (2009).
Oke, K. B., Rolshausen, G., LeBlond, C. & Hendry, A. P. How parallel is parallel evolution? A comparative analysis in fishes. Am. Nat. 190, 1–16 (2017).
Ketha, H., Kaur, S., Grebe, S. K. & Singh, R. J. Clinical applications of LC-MS sex steroid assays: evolution of methodologies in the 21st century. Curr. Opin. Endocrinol. Diabetes Obes. 21, 217–226 (2014).
Kozlowski, C. P., Bauman, J. E. & Caldwell Hahn, D. A simplified method for extracting androgens from avian egg yolks. Zoo Biol. 28, 137–143 (2009).
Newman, A. E. M. et al. Analysis of steroids in songbird plasma and brain by coupling solid phase extraction to radioimmunoassay. Gen. Comp. Endocrinol. 155, 503–510 (2008).
Paitz, R. T. & Bowden, R. M. Sulfonation of maternal steroids is a conserved metabolic pathway in vertebrates. Integr. Comp. Biol. 53, 895–901 (2013).
Merrill, L., Chiavacci, S. J., Paitz, R. T. & Benson, T. J. Quantification of 27 yolk steroid hormones in seven shrubland bird species: Interspecific patterns of hormone deposition and links to life history, development, and predation risk. Can. J. Zool. 97, 1–12 (2019).
Oksanen, J. Multivariate analysis of ecological communities in R: vegan tutorial. R Doc. 43, https://doi.org/10.1016/0169-5347(88)90124-3 (2015).
Oksanen, J. et al. vegan: Community Ecology Package (2019).
Revelle, W. psych: Procedures for personality and psychological research (2018).
Kabacoff, R. L. R in action: data analysis and graphics with R. (Manning Publications Co. 2015).
Phillips, P. CPC – Common Principal Component Analysis Program (1999).
Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & Team, R. C. nlme: linear and nonlinear mixed effects models (2018).
Kuznetsova, A., Brockhoff, P. & Christensen, R. lmerTest package: tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).
R Core Team. R: A language and environment for statistical computing (2018).
Wickham, H., François, R., Henry, L. & Müller, K. dplyr: A grammar of data manipulation (2019).
Wickham, H. ggplot2: Elegant graphics for data analysis (2016).
Ligges, U. & Mächler, M. Scatterplot3d – an R Package for visualizing multivariate data. J. Stat. Softw. 8, 1–20 (2003).
Wright, K. Corrgram: Plot a Correlogram (2018).
Cohen, J. Statistical power analysis for the behavioral sciences. Statistical Power Analysis for the Behavioral Sciences (Lawrence Erlbaum Associates, 1988).
Arizona Software. GraphClick (2012).
Faul, F., Erdfelder, E., Lang, A.-G. & Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 39, 175–191 (2007).
Paitz, R. T., Mommer, B. C., Suhr, E. & Bell, A. M. Changes in the concentrations of four maternal steroids during embryonic development in the threespined stickleback (Gasterosteus aculeatus). J. Exp. Zool. Part A Ecol. Genet. Physiol. 323, 422–429 (2015).
Leet, J. K., Gall, H. E. & Sepúlveda, M. S. A review of studies on androgen and estrogen exposure in fish early life stages: effects on gene and hormonal control of sexual differentiation. J. Appl. Toxicol. 31, 379–398 (2011).
Paitz, R. T., Bukhari, S. A. & Bell, A. M. Stickleback embryos use ATP-binding cassette transporters as a buffer against exposure to maternally derived cortisol. Proc. R. Soc. B Biol. Sci. 283 (2016).
Giesing, E. R., Suski, C. D., Warner, R. E. & Bell, A. M. Female sticklebacks transfer information via eggs: effects of maternal experience with predators on offspring. Proc. R. Soc. B Biol. Sci. 278, 1753–1759 (2011).
Roche, D. P. P., McGhee, K. E. E. & Bell, A. M. M. Maternal predator-exposure has lifelong consequences for offspring learning in threespined sticklebacks. Biol. Lett. 8, 932–935 (2012).
McGhee, K. E., Pintor, L. M., Suhr, E. L. & Bell, A. M. Maternal exposure to predation risk decreases offspring antipredator behaviour and survival in threespined stickleback. Funct. Ecol. 26, 932–940 (2012).
Mommer, B. C. & Bell, A. M. A test of maternal programming of offspring stress response to predation risk in threespine sticklebacks. Physiol. Behav. 122, 222–227 (2013).
Mommer, B. C. & Bell, A. M. Maternal experience with predation risk influences genome-wide embryonic gene expression in Threespined Sticklebacks (Gasterosteus aculeatus). PLoS One 9 (2014).
Bonier, F. & Martin, P. R. How can we estimate natural selection on endocrine traits? Lessons from evolutionary biology. Proc. R. Soc. B Biol. Sci. 283 (2016).
Gallagher, A. J. et al. Effects of predator exposure on baseline and stress-induced glucocorticoid hormone concentrations in pumpkinseed Lepomis gibbosus. J. Fish Biol. 95, 969–973 (2019).
Wingfield, J. C. The comparative biology of environmental stress: Behavioural endocrinology and variation in ability to cope with novel, changing environments. Anim. Behav. 85, 1127–1133 (2013).
Jenkins, B. R., Vitousek, M. N., Hubbard, J. K. & Safran, R. J. An experimental analysis of the heritability of variation in glucocorticoid concentrations in a wild avian population. Proc. R. Soc. B Biol. Sci. 281, 20141302 (2014).
Stedman, J. M., Hallinger, K. K., Winkler, D. W. & Vitousek, M. N. Heritable variation in circulating glucocorticoids and endocrine flexibility in a free-living songbird. J. Evol. Biol. 30, 1724–1735 (2017).
Patterson, S. H., Hahn, T. P., Cornelius, J. M. & Breuner, C. W. Natural selection and glucocorticoid physiology. J. Evol. Biol. 27, 259–274 (2014).
Langerhans, R. B., Gifford, M. E. & Joseph, E. O. Ecological speciation in Gambusia fishes. Evolution. 61, 2056–2074 (2007).
Langerhans, R. B. Predictability and parallelism of multitrait adaptation. J. Hered. 109, 59–70 (2018).
Grissom, N. & Bhatnagar, S. Habituation to repeated stress: Get used to it. Neurobiol. Learn. Mem. 92, 215–224 (2009).
Walsh, M. R. et al. Local adaptation in transgenerational responses to predators. Proc. R. Soc. B Biol. Sci. 283 (2016).
Lyons, D. M. & Parker, K. J. Stress inoculation-induced indications of resilience in monkeys. J. Trauma. Stress 20, 423–433 (2007).
Cyr, N. E. & Romero, L. M. Chronic stress in free-living European starlings reduces corticosterone concentrations and reproductive success. Gen. Comp. Endocrinol. 151, 82–89 (2007).
Conover, D. & Schultz, E. T. Significance of countergradient variation. Trends Ecol. Evol. 10, 248–252 (1995).
Wainwright, P. C. Many-to-one mapping of form to function: A general principle in organismal design? Integr. Comp. Biol. 45, 256 (2005).
Manceau, M., Domingues, V. S., Linnen, C. R., Rosenblum, E. B. & Hoekstra, H. E. Convergence in pigmentation at multiple levels: Mutations, genes and function. Philos. Trans. R. Soc. B Biol. Sci. 365, 2439–2450 (2010).
Elmer, K. R. et al. Parallel evolution of Nicaraguan crater lake cichlid fishes via non-parallel routes. Nat. Commun. 5, 1–8 (2014).
Agrawal, A. A. Toward a predictive framework for convergent evolution: integrating natural history, genetic mechanisms, and consequences for the diversity of life. Am. Nat. 190, S1–S12 (2017).
Thompson, C. J. et al. Many-to-one form-to-function mapping weakens parallel morphological evolution. Evolution. 71, 2738–2749 (2017).
Miller, S. E., Roesti, M. & Schluter, D. A single interacting species leads to widepsread parallel evolution of the stickleback genome. Curr. Biol. 29, 1–8 (2019).
Cohen, A. A., Martin, L. B., Wingfield, J. C., McWilliams, S. R. & Dunne, J. A. Physiological regulatory networks: ecological roles and evolutionary constraints. Trends Ecol. Evol. 27, 428–435 (2012).
McGlothlin, J. W. & Ketterson, E. D. Hormone-mediated suites as adaptations and evolutionary constraints. Philos. Trans. R. Soc. B Biol. Sci. 363, 1611–1620 (2008).
Bourg, S., Jacob, L., Menu, F. & Rajon, E. Hormonal pleiotropy and the evolution of allocation trade-offs. Evolution. 73, 661–674 (2019).
Clinchy, M., Sheriff, M. J. & Zanette, L. Y. Predator-induced stress and the ecology of fear. Funct. Ecol. 27, 56–65 (2013).
Creel, S., Dantzer, B., Goymann, W. & Rubenstein, D. R. The ecology of stress: Effects of the social environment. Funct. Ecol. 27, 66–80 (2013).
Miles, M. C. et al. Standing variation and the capacity for change: Are endocrine phenotypes more variable than other traits? Integr. Comp. Biol. 58, 751–762 (2018).
Taff, C. C., Schoenle, L. A. & Vitousek, M. N. The repeatability of glucocorticoids: A review and meta-analysis. Gen. Comp. Endocrinol. 260, 136–145 (2018).
Faught, E., Best, C. & Vijayan, M. M. Maternal stress-associated cortisol stimulation may protect embryos from cortisol excess in zebrafish. R. Soc. 3, 1–9 (2016).
Kleppe, L. et al. Cortisol treatment of prespawning female cod affects cytogenesis related factors in eggs and embryos. Gen. Comp. Endocrinol. 189, 84–95 (2013).
Clinchy, M. et al. Multiple measures elucidate glucocorticoid responses to environmental variation in predation threat. Oecologia 166, 607–614 (2011).
Boonstra, R., Hik, D., Singleton, G. R. & Tinnikov, A. The impact of predator-induced stress on the snowshoe hare cycle. Ecol. Monogr. 68, 371–394 (1998).
Clinchy, M., Zanette, L., Boonstra, R., Wingfield, J. C. & Smith, J. N. M. Balancing food and predator pressure induces chronic stress in songbirds. Proc. R. Soc. B Biol. Sci. 271, 2473–2479 (2004).
Graham, S. P., Freidenfelds, N. A., McCormick, G. L. & Langkilde, T. The impacts of invaders: Basal and acute stress glucocorticoid profiles and immune function in native lizards threatened by invasive ants. Gen. Comp. Endocrinol. 176, 400–408 (2012).
Hik, D. S., McColl, C. J. & Boonstra, R. Why are Arctic ground squirrels more stressed in the boreal forest than in alpine meadows? Ecoscience 8, 275–288 (2001).
Scheuerlein, A., Van’t Hof, T. J. & Gwinner, E. Predators as stressors? Physiological and reproductive consequences of predation risk in tropical stonechats (Saxicola torquata axillaris). Proc. R. Soc. B Biol. Sci. 268, 1575–1582 (2001).
Sheriff, M. J. et al. The ghosts of predators past: population cycles and the role of maternal programming under fluctuating predation risk. Ecology 91, 2983–2994 (2010).
Source: Ecology - nature.com