in

Effects of predation risk on egg steroid profiles across multiple populations of threespine stickleback

  • 1.

    Creel, S. & Christianson, D. Relationships between direct predation and risk effects. Trends Ecol. Evol. 23, 194–201 (2008).

    • Article
    • Google Scholar
  • 2.

    Creel, S. The control of risk hypothesis: reactive vs. proactive antipredator responses and stress-mediated vs. food-mediated costs of response. Ecol. Lett. 21, 947–956 (2018).

    • Article
    • Google Scholar
  • 3.

    Stuart, Y. E. Divergent uses of “Parallel Evolution” during the history of The American Naturalist. Am. Nat. 193, 11–19 (2019).

    • Article
    • Google Scholar
  • 4.

    Stern, D. L. & Orgogozo, V. Is genetic evolution predictable? Science. 323, 746–751 (2009).

  • 5.

    Losos, J. B. Convergence, adaptation, and constraint. Evolution. 65, 1827–1840 (2011).

    • Article
    • Google Scholar
  • 6.

    Bolnick, D. I., Barrett, R. D. H., Oke, K. B., Rennison, D. J. & Stuart, Y. E. (Non) Parallel Evolution. Annu. Rev. Ecol. Evol. Syst. 49, 303–330 (2018).

    • Article
    • Google Scholar
  • 7.

    Langerhans, R. B. Predicting evolution with generalized models of divergent selection: A case study with poeciliid fish. Integr. Comp. Biol. 50, 1167–1184 (2010).

    • Article
    • Google Scholar
  • 8.

    Foster, S. A. et al. Iterative development and the scope for plasticity: Contrasts among trait categories in an adaptive radiation. Heredity. 115, 335–348 (2015).

  • 9.

    O’Steen, S., Cullum, A. J. & Bennett, A. Rapid evolution of escape ability in Trinidad guppies (Poecilia reticulata). Evolution. 56, 776–784 (2002).

    • Article
    • Google Scholar
  • 10.

    Wund, M. A., Baker, J. A., Golub, J. L. & Foster, S. A. The evolution of antipredator behaviour following relaxed and reversed selection in Alaskan threespine stickleback fish. Anim. Behav. 106, 181–189 (2015).

  • 11.

    Walsh, M. R. & Post, D. M. The impact of intraspecific variation in a fish predator on the evolution of phenotypic plasticity and investment in sex in Daphnia ambigua. J. Evol. Biol. 25, 80–89 (2012).

    • Article
    • Google Scholar
  • 12.

    Moore, M. P., Riesch, R. & Martin, R. A. The predictability and magnitude of life-history divergence to ecological agents of selection: A meta-analysis in livebearing fishes. Ecol. Lett. 19, 435–442 (2016).

    • Article
    • Google Scholar
  • 13.

    Romero, L. M. Physiological stress in ecology: lessons from biomedical research. Trends Ecol. Evol. 19, 249–255 (2004).

    • Article
    • Google Scholar
  • 14.

    Taff, C. C. & Vitousek, M. N. Endocrine flexibility: optimizing phenotypes in a dynamic world? Trends Ecol. Evol. 31, 476–488 (2016).

    • Article
    • Google Scholar
  • 15.

    Barton, B. A. Stress in Fishes: A diversity of responses with particular reference to changes in circulating corticosteroids. Integr. Comp. Biol. 42, 517–525 (2002).

  • 16.

    Bell, A. M., Backström, T., Huntingford, F. A., Pottinger, T. G. & Winberg, S. Variable neuroendocrine responses to ecologically-relevant challenges in sticklebacks. Physiol. Behav. 91, 15–25 (2007).

  • 17.

    Cockrem, J. F. & Silverin, B. Sight of a predator can stimulate a corticosterone response in the great tit (Parus major). Gen. Comp. Endocrinol. 125, 248–255 (2002).

  • 18.

    Sheriff, M. J., Krebs, C. J. & Boonstra, R. The sensitive hare: Sublethal effects of predator stress on reproduction in snowshoe hares. J. Anim. Ecol. 78, 1249–1258 (2009).

    • Article
    • Google Scholar
  • 19.

    Hammerschlag, N. et al. Physiological stress responses to natural variation in predation risk: evidence from white sharks and seals. Ecology 98, 3199–3210 (2017).

    • Article
    • Google Scholar
  • 20.

    Creel, S., Winnie, J. A. J. & Christianson, D. Glucocorticoid stress hormones and the effect of predation risk on elk reproduction. Proc. Natl. Acad. Sci. 106, 12388–12393 (2009).

  • 21.

    Fischer, E. K., Harris, R. M., Hofmann, H. A. & Hoke, K. L. Predator exposure alters stress physiology in guppies across timescales. Horm. Behav. 65, 165–172 (2014).

  • 22.

    Archard, G. A., Earley, R. L., Hanninen, A. F. & Braithwaite, V. A. Correlated behaviour and stress physiology in fish exposed to different levels of predation pressure. Funct. Ecol. 26, 637–645 (2012).

    • Article
    • Google Scholar
  • 23.

    McCormick, G. L., Robbins, T. R., Cavigelli, S. A. & Langkilde, T. Ancestry trumps experience: Transgenerational but not early life stress affects the adult physiological stress response. Horm. Behav. 87, 115–121 (2017).

  • 24.

    Wingfield, J. C. et al. Ecological bases of hormone-behavior interactions: the ‘emergency life history stage’. Am. Zool. 38, 191–206 (1998).

  • 25.

    Tilbrook, A. J., Turner, A. I. & Clarke, I. J. Effects of stress on reproduction in non-rodent mammals: the role of glucocorticoids and sex differences. Rev. Reprod. 5, 105–113 (2000).

  • 26.

    Payne, A. H. & Hales, D. B. Overview of steroidogenic enzymes in the pathway from cholesterol to active steroid hormones. Endocr. Rev. 25, 947–970 (2004).

  • 27.

    Chand, D. & Lovejoy, D. A. Stress and reproduction: Controversies and challenges. Gen. Comp. Endocrinol. 171, 253–257 (2011).

  • 28.

    Leatherland, J. F., Li, M. & Barkataki, S. Stressors, glucocorticoids and ovarian function in teleosts. J. Fish Biol. 76, 86–111 (2010).

  • 29.

    Lessells, C. M., Ruuskanen, S. & Schwabl, H. Yolk steroids in great tit Parus major eggs: variation and covariation between hormones and with environmental and parental factors. Behav. Ecol. Sociobiol. 70, 843–856 (2016).

  • 30.

    Love, O. P., Mcgowan, P. O. & Sheriff, M. J. Maternal adversity and ecological stressors in natural populations: The role of stress axis programming in individuals, with implications for populations and communities. Funct. Ecol. 27, 81–92 (2013).

    • Article
    • Google Scholar
  • 31.

    Harris, A. & Seckl, J. Glucocorticoids, prenatal stress and the programming of disease. Horm. Behav. 59, 279–289 (2011).

  • 32.

    Sheriff, M. J. & Love, O. P. Determining the adaptive potential of maternal stress. Ecol. Lett. 16, 271–280 (2013).

  • 33.

    Maccari, S., Krugers, H. J., Morley-Fletcher, S., Szyf, M. & Brunton, P. J. The consequences of early-life adversity: neurobiological, behavioural and epigenetic adaptations. J. Neuroendocrinol. 26, 707–723 (2014).

  • 34.

    Henriksen, R., Rettenbacher, S. & Groothuis, T. G. G. Prenatal stress in birds: Pathways, effects, function and perspectives. Neurosci. Biobehav. Rev. 35, 1484–1501 (2011).

    • Article
    • Google Scholar
  • 35.

    Sopinka, N. M., Capelle, P. M., Semeniuk, C. A. D. & Love, O. P. Glucocorticoids in fish eggs: variation, interactions with the environment, and the potential to shape offspring fitness. Physiol. Biochem. Zool. 90, 15–33 (2017).

  • 36.

    Moisiadis, V. G. & Matthews, S. G. Glucocorticoids and fetal programming part 2: mechanisms. Nat. Rev. Endocrinol. 10, 403–11 (2014).

  • 37.

    Podmokła, E., Drobniak, S. M. & Rutkowska, J. Chicken or egg? Outcomes of experimental manipulations of maternally transmitted hormones depend on administration method – a meta-analysis. Biol. Rev. 93, 1499–1517 (2018).

  • 38.

    Cottrell, E. C., Holmes, M. C., Livingstone, D. E., Kenyon, C. J. & Seckl, J. R. Reconciling the nutritional and glucocorticoid hypotheses of fetal programming. FASEB J. 26, 1866–1874 (2012).

  • 39.

    Coslovsky, M., Groothuis, T., de Vries, B. & Richner, H. Maternal steroids in egg yolk as a pathway to translate predation risk to offspring: Experiments with great tits. Gen. Comp. Endocrinol. 176, 211–214 (2012).

  • 40.

    Bell, M. A. & Foster, S. A. Introduction to the evolutionary biology of the threespine stickleback. In The Evolutionary Biology of the Threespine Stickleback (eds. Bell, M. A. & Foster, S. A.) 1–26 (Oxford University Press, 1994).

  • 41.

    Peichel, C. L. & Marques, D. A. The genetic and molecular architecture of phenotypic diversity in sticklebacks. Philos. Trans. R. Soc. B Biol. Sci. 372 (2017).

  • 42.

    Stuart, Y. E. et al. Contrasting effects of environment and genetics generate a continuum of parallel evolution. Nat. Ecol. Evol. 1, 1–7 (2017).

    • Article
    • Google Scholar
  • 43.

    Reznick, D. N., Losos, J. & Travis, J. From low to high gear: there has been a paradigm shift in our understanding of evolution. Ecol. Lett. 22, 233–244 (2019).

    • Article
    • Google Scholar
  • 44.

    Bell, M. A., Aguirre, W. E. & Buck, N. J. Twelve years of contemporary armor evolution in a Threespine Stickleback population. Evolution (N. Y). 58, 814–824 (2004).

    • Google Scholar
  • 45.

    Soldin, S. J. & Soldin, O. P. Steroid hormone analysis by tandem mass spectrometry. Clin. Chem. 55, 1061–1066 (2009).

  • 46.

    Hill, M. et al. Steroid metabolome in fetal and maternal body fluids in human late pregnancy. J. Steroid Biochem. Mol. Biol. 122, 114–132 (2010).

  • 47.

    Adams, D. C. & Collyer, M. L. A general framework for the analysis of phenotypic trajectories in evolutionary studies. Evolution. 63, 1143–1154 (2009).

    • Article
    • Google Scholar
  • 48.

    Oke, K. B., Rolshausen, G., LeBlond, C. & Hendry, A. P. How parallel is parallel evolution? A comparative analysis in fishes. Am. Nat. 190, 1–16 (2017).

    • Article
    • Google Scholar
  • 49.

    Ketha, H., Kaur, S., Grebe, S. K. & Singh, R. J. Clinical applications of LC-MS sex steroid assays: evolution of methodologies in the 21st century. Curr. Opin. Endocrinol. Diabetes Obes. 21, 217–226 (2014).

  • 50.

    Kozlowski, C. P., Bauman, J. E. & Caldwell Hahn, D. A simplified method for extracting androgens from avian egg yolks. Zoo Biol. 28, 137–143 (2009).

  • 51.

    Newman, A. E. M. et al. Analysis of steroids in songbird plasma and brain by coupling solid phase extraction to radioimmunoassay. Gen. Comp. Endocrinol. 155, 503–510 (2008).

  • 52.

    Paitz, R. T. & Bowden, R. M. Sulfonation of maternal steroids is a conserved metabolic pathway in vertebrates. Integr. Comp. Biol. 53, 895–901 (2013).

  • 53.

    Merrill, L., Chiavacci, S. J., Paitz, R. T. & Benson, T. J. Quantification of 27 yolk steroid hormones in seven shrubland bird species: Interspecific patterns of hormone deposition and links to life history, development, and predation risk. Can. J. Zool. 97, 1–12 (2019).

  • 54.

    Oksanen, J. Multivariate analysis of ecological communities in R: vegan tutorial. R Doc. 43, https://doi.org/10.1016/0169-5347(88)90124-3 (2015).

  • 55.

    Oksanen, J. et al. vegan: Community Ecology Package (2019).

  • 56.

    Revelle, W. psych: Procedures for personality and psychological research (2018).

  • 57.

    Kabacoff, R. L. R in action: data analysis and graphics with R. (Manning Publications Co. 2015).

  • 58.

    Phillips, P. CPC – Common Principal Component Analysis Program (1999).

  • 59.

    Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & Team, R. C. nlme: linear and nonlinear mixed effects models (2018).

  • 60.

    Kuznetsova, A., Brockhoff, P. & Christensen, R. lmerTest package: tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).

    • Article
    • Google Scholar
  • 61.

    R Core Team. R: A language and environment for statistical computing (2018).

  • 62.

    Wickham, H., François, R., Henry, L. & Müller, K. dplyr: A grammar of data manipulation (2019).

  • 63.

    Wickham, H. ggplot2: Elegant graphics for data analysis (2016).

  • 64.

    Ligges, U. & Mächler, M. Scatterplot3d – an R Package for visualizing multivariate data. J. Stat. Softw. 8, 1–20 (2003).

    • Article
    • Google Scholar
  • 65.

    Wright, K. Corrgram: Plot a Correlogram (2018).

  • 66.

    Cohen, J. Statistical power analysis for the behavioral sciences. Statistical Power Analysis for the Behavioral Sciences (Lawrence Erlbaum Associates, 1988).

  • 67.

    Arizona Software. GraphClick (2012).

  • 68.

    Faul, F., Erdfelder, E., Lang, A.-G. & Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 39, 175–191 (2007).

    • Article
    • Google Scholar
  • 69.

    Paitz, R. T., Mommer, B. C., Suhr, E. & Bell, A. M. Changes in the concentrations of four maternal steroids during embryonic development in the threespined stickleback (Gasterosteus aculeatus). J. Exp. Zool. Part A Ecol. Genet. Physiol. 323, 422–429 (2015).

  • 70.

    Leet, J. K., Gall, H. E. & Sepúlveda, M. S. A review of studies on androgen and estrogen exposure in fish early life stages: effects on gene and hormonal control of sexual differentiation. J. Appl. Toxicol. 31, 379–398 (2011).

  • 71.

    Paitz, R. T., Bukhari, S. A. & Bell, A. M. Stickleback embryos use ATP-binding cassette transporters as a buffer against exposure to maternally derived cortisol. Proc. R. Soc. B Biol. Sci. 283 (2016).

  • 72.

    Giesing, E. R., Suski, C. D., Warner, R. E. & Bell, A. M. Female sticklebacks transfer information via eggs: effects of maternal experience with predators on offspring. Proc. R. Soc. B Biol. Sci. 278, 1753–1759 (2011).

    • Article
    • Google Scholar
  • 73.

    Roche, D. P. P., McGhee, K. E. E. & Bell, A. M. M. Maternal predator-exposure has lifelong consequences for offspring learning in threespined sticklebacks. Biol. Lett. 8, 932–935 (2012).

  • 74.

    McGhee, K. E., Pintor, L. M., Suhr, E. L. & Bell, A. M. Maternal exposure to predation risk decreases offspring antipredator behaviour and survival in threespined stickleback. Funct. Ecol. 26, 932–940 (2012).

  • 75.

    Mommer, B. C. & Bell, A. M. A test of maternal programming of offspring stress response to predation risk in threespine sticklebacks. Physiol. Behav. 122, 222–227 (2013).

  • 76.

    Mommer, B. C. & Bell, A. M. Maternal experience with predation risk influences genome-wide embryonic gene expression in Threespined Sticklebacks (Gasterosteus aculeatus). PLoS One 9 (2014).

  • 77.

    Bonier, F. & Martin, P. R. How can we estimate natural selection on endocrine traits? Lessons from evolutionary biology. Proc. R. Soc. B Biol. Sci. 283 (2016).

  • 78.

    Gallagher, A. J. et al. Effects of predator exposure on baseline and stress-induced glucocorticoid hormone concentrations in pumpkinseed Lepomis gibbosus. J. Fish Biol. 95, 969–973 (2019).

    • CAS
    • Google Scholar
  • 79.

    Wingfield, J. C. The comparative biology of environmental stress: Behavioural endocrinology and variation in ability to cope with novel, changing environments. Anim. Behav. 85, 1127–1133 (2013).

    • Article
    • Google Scholar
  • 80.

    Jenkins, B. R., Vitousek, M. N., Hubbard, J. K. & Safran, R. J. An experimental analysis of the heritability of variation in glucocorticoid concentrations in a wild avian population. Proc. R. Soc. B Biol. Sci. 281, 20141302 (2014).

  • 81.

    Stedman, J. M., Hallinger, K. K., Winkler, D. W. & Vitousek, M. N. Heritable variation in circulating glucocorticoids and endocrine flexibility in a free-living songbird. J. Evol. Biol. 30, 1724–1735 (2017).

  • 82.

    Patterson, S. H., Hahn, T. P., Cornelius, J. M. & Breuner, C. W. Natural selection and glucocorticoid physiology. J. Evol. Biol. 27, 259–274 (2014).

  • 83.

    Langerhans, R. B., Gifford, M. E. & Joseph, E. O. Ecological speciation in Gambusia fishes. Evolution. 61, 2056–2074 (2007).

  • 84.

    Langerhans, R. B. Predictability and parallelism of multitrait adaptation. J. Hered. 109, 59–70 (2018).

    • Article
    • Google Scholar
  • 85.

    Grissom, N. & Bhatnagar, S. Habituation to repeated stress: Get used to it. Neurobiol. Learn. Mem. 92, 215–224 (2009).

    • Article
    • Google Scholar
  • 86.

    Walsh, M. R. et al. Local adaptation in transgenerational responses to predators. Proc. R. Soc. B Biol. Sci. 283 (2016).

  • 87.

    Lyons, D. M. & Parker, K. J. Stress inoculation-induced indications of resilience in monkeys. J. Trauma. Stress 20, 423–433 (2007).

    • Article
    • Google Scholar
  • 88.

    Cyr, N. E. & Romero, L. M. Chronic stress in free-living European starlings reduces corticosterone concentrations and reproductive success. Gen. Comp. Endocrinol. 151, 82–89 (2007).

  • 89.

    Conover, D. & Schultz, E. T. Significance of countergradient variation. Trends Ecol. Evol. 10, 248–252 (1995).

  • 90.

    Wainwright, P. C. Many-to-one mapping of form to function: A general principle in organismal design? Integr. Comp. Biol. 45, 256 (2005).

    • Article
    • Google Scholar
  • 91.

    Manceau, M., Domingues, V. S., Linnen, C. R., Rosenblum, E. B. & Hoekstra, H. E. Convergence in pigmentation at multiple levels: Mutations, genes and function. Philos. Trans. R. Soc. B Biol. Sci. 365, 2439–2450 (2010).

  • 92.

    Elmer, K. R. et al. Parallel evolution of Nicaraguan crater lake cichlid fishes via non-parallel routes. Nat. Commun. 5, 1–8 (2014).

  • 93.

    Agrawal, A. A. Toward a predictive framework for convergent evolution: integrating natural history, genetic mechanisms, and consequences for the diversity of life. Am. Nat. 190, S1–S12 (2017).

    • Article
    • Google Scholar
  • 94.

    Thompson, C. J. et al. Many-to-one form-to-function mapping weakens parallel morphological evolution. Evolution. 71, 2738–2749 (2017).

    • Article
    • Google Scholar
  • 95.

    Miller, S. E., Roesti, M. & Schluter, D. A single interacting species leads to widepsread parallel evolution of the stickleback genome. Curr. Biol. 29, 1–8 (2019).

  • 96.

    Cohen, A. A., Martin, L. B., Wingfield, J. C., McWilliams, S. R. & Dunne, J. A. Physiological regulatory networks: ecological roles and evolutionary constraints. Trends Ecol. Evol. 27, 428–435 (2012).

    • Article
    • Google Scholar
  • 97.

    McGlothlin, J. W. & Ketterson, E. D. Hormone-mediated suites as adaptations and evolutionary constraints. Philos. Trans. R. Soc. B Biol. Sci. 363, 1611–1620 (2008).

    • Article
    • Google Scholar
  • 98.

    Bourg, S., Jacob, L., Menu, F. & Rajon, E. Hormonal pleiotropy and the evolution of allocation trade-offs. Evolution. 73, 661–674 (2019).

    • Article
    • Google Scholar
  • 99.

    Clinchy, M., Sheriff, M. J. & Zanette, L. Y. Predator-induced stress and the ecology of fear. Funct. Ecol. 27, 56–65 (2013).

    • Article
    • Google Scholar
  • 100.

    Creel, S., Dantzer, B., Goymann, W. & Rubenstein, D. R. The ecology of stress: Effects of the social environment. Funct. Ecol. 27, 66–80 (2013).

    • Article
    • Google Scholar
  • 101.

    Miles, M. C. et al. Standing variation and the capacity for change: Are endocrine phenotypes more variable than other traits? Integr. Comp. Biol. 58, 751–762 (2018).

  • 102.

    Taff, C. C., Schoenle, L. A. & Vitousek, M. N. The repeatability of glucocorticoids: A review and meta-analysis. Gen. Comp. Endocrinol. 260, 136–145 (2018).

  • 103.

    Faught, E., Best, C. & Vijayan, M. M. Maternal stress-associated cortisol stimulation may protect embryos from cortisol excess in zebrafish. R. Soc. 3, 1–9 (2016).

    • Google Scholar
  • 104.

    Kleppe, L. et al. Cortisol treatment of prespawning female cod affects cytogenesis related factors in eggs and embryos. Gen. Comp. Endocrinol. 189, 84–95 (2013).

  • 105.

    Clinchy, M. et al. Multiple measures elucidate glucocorticoid responses to environmental variation in predation threat. Oecologia 166, 607–614 (2011).

  • 106.

    Boonstra, R., Hik, D., Singleton, G. R. & Tinnikov, A. The impact of predator-induced stress on the snowshoe hare cycle. Ecol. Monogr. 68, 371–394 (1998).

    • Article
    • Google Scholar
  • 107.

    Clinchy, M., Zanette, L., Boonstra, R., Wingfield, J. C. & Smith, J. N. M. Balancing food and predator pressure induces chronic stress in songbirds. Proc. R. Soc. B Biol. Sci. 271, 2473–2479 (2004).

    • Article
    • Google Scholar
  • 108.

    Graham, S. P., Freidenfelds, N. A., McCormick, G. L. & Langkilde, T. The impacts of invaders: Basal and acute stress glucocorticoid profiles and immune function in native lizards threatened by invasive ants. Gen. Comp. Endocrinol. 176, 400–408 (2012).

  • 109.

    Hik, D. S., McColl, C. J. & Boonstra, R. Why are Arctic ground squirrels more stressed in the boreal forest than in alpine meadows? Ecoscience 8, 275–288 (2001).

    • Article
    • Google Scholar
  • 110.

    Scheuerlein, A., Van’t Hof, T. J. & Gwinner, E. Predators as stressors? Physiological and reproductive consequences of predation risk in tropical stonechats (Saxicola torquata axillaris). Proc. R. Soc. B Biol. Sci. 268, 1575–1582 (2001).

  • 111.

    Sheriff, M. J. et al. The ghosts of predators past: population cycles and the role of maternal programming under fluctuating predation risk. Ecology 91, 2983–2994 (2010).

    • Article
    • Google Scholar

  • Source: Ecology - nature.com

    The microbiome and resistome of chimpanzees, gorillas, and humans across host lifestyle and geography

    Understanding the impact of climate change on the ocean