in

Effects of the winter temperature regime on survival, body mass loss and post-winter starvation resistance in laboratory-reared and field-collected ladybirds

  • 1.

    Araujo, M. B. et al. Quaternary climate changes explain diversity among reptiles and amphibians. Ecography 31, 8–15, https://doi.org/10.1111/j.2007.0906-7590.05318.x (2008).

    • Article
    • Google Scholar
  • 2.

    Morgan, E. R., Jefferies, R., Krajewski, M., Ward, P. & Shaw, S. E. Canine pulmonary angiostrongylosis: The influence of climate on parasite distribution. Parasitology International 58, 406–410, https://doi.org/10.1016/j.parint.2009.08.003 (2009).

  • 3.

    Szentivanyi, T. et al. Climatic effects on the distribution of ant- and bat fly-associated fungal ectoparasites (Ascomycota, Laboulbeniales). Fungal Ecology 39, 371–379, https://doi.org/10.1016/j.funeco.2019.03.003 (2019).

    • Article
    • Google Scholar
  • 4.

    Bale, J. S. & Hayward, S. A. L. Insect overwintering in a changing climate. Journal of Experimental Biology 213, 980–994, https://doi.org/10.1242/jeb.037911 (2010).

  • 5.

    Williams, C. M., Henry, H. A. L. & Sinclair, B. J. Cold truths: How winter drives responses of terrestrial organisms to climate change. Biological Reviews 90, 214–235, https://doi.org/10.1111/brv.12105 (2015).

  • 6.

    Hahn, D. A. & Denlinger, D. L. Meeting the energetic demands of insect diapause: Nutrient storage and utilization. Journal of Insect Physiology 53, 760–773, https://doi.org/10.1016/j.jinsphys.2007.03.018 (2007).

  • 7.

    Turnock, W. J. & Fields, P. G. Winter climates and coldhardiness in terrestrial insects. European Journal of Entomology 102, 561–576, https://doi.org/10.14411/eje.2005.081 (2005).

    • Article
    • Google Scholar
  • 8.

    Sinclair, B. J., Addo-Bediako, A. & Chown, S. L. Climatic variability and the evolution of insect freeze tolerance. Biological Reviews of the Cambridge Philosophical Society 78, 181–195, https://doi.org/10.1017/S1464793102006024 (2003).

  • 9.

    Toxopeus, J. & Sinclair, B. J. Mechanisms underlying insect freeze tolerance. Biological Reviews 93, 1891–1914, https://doi.org/10.1111/brv.12425 (2018).

  • 10.

    Duman, J. G. Antifreeze and Ice Nucleator Proteins in Terrestrial Arthropods. Annual Review of Physiology 63, 327–357, https://doi.org/10.1146/annurev.physiol.63.1.327 (2001).

  • 11.

    Sinclair, B. J., Vernon, P., Klok, C. J. & Chown, S. L. Insects at low temperatures: An ecological perspective. Trends in Ecology and Evolution 18, 257–262, https://doi.org/10.1016/S0169-5347(03)00014-4 (2003).

    • Article
    • Google Scholar
  • 12.

    Watanabe, M. Cold tolerance and myo-inositol accumulation in overwintering adults of a lady beetle, Harmonia axyridis (Coleoptera: Coccinellidae). European Journal of Entomology 99, 5–9, https://doi.org/10.14411/eje.2002.002 (2002).

  • 13.

    Knapp, M., Vernon, P. & Renault, D. Studies on chill coma recovery in the ladybird, Harmonia axyridis: Ontogenetic profile, effect of repeated cold exposures, and capacity to predict winter survival. Journal of Thermal Biology 74, 275–280, https://doi.org/10.1016/j.jtherbio.2018.04.013 (2018).

  • 14.

    Overgaard, J. & MacMillan, H. A. The Integrative Physiology of Insect Chill Tolerance. Annual Review of Physiology 79, 187–208, https://doi.org/10.1146/annurev-physiol-022516-034142 (2017).

  • 15.

    Hahn, D. A. & Denlinger, D. L. Energetics of Insect Diapause. Annual Review of Entomology 56, 103–121, https://doi.org/10.1146/annurev-ento-112408-085436 (2011).

  • 16.

    Tauber, M. J., Tauber, C. A. & Masaki, S. Seasonal adaptations of insects. (Oxford University Press, 1986).

  • 17.

    Koštál, V. Eco-physiological phases of insect diapause. Journal of Insect Physiology 52, 113–127, https://doi.org/10.1016/j.jinsphys.2005.09.008 (2006).

  • 18.

    Irwin, J. T. & Lee, R. E. Cold winter microenvironments conserve energy and improve overwintering survival and potential fecundity of the goldenrod gall fly, Eurosta solidaginis. Oikos 100, 71–78, https://doi.org/10.1034/j.1600-0706.2003.11738.x (2003).

    • Article
    • Google Scholar
  • 19.

    Sinclair, B. J. Linking energetics and overwintering in temperate insects. Journal of Thermal Biology 54, 5–11, https://doi.org/10.1016/j.jtherbio.2014.07.007 (2015).

  • 20.

    Musolin, D. L., Tougou, D. & Fujisaki, K. Too hot to handle? Phenological and life-history responses to simulated climate change of the southern green stink bug Nezara viridula (Heteroptera: Pentatomidae). Global Change Biology 16, 73–87, https://doi.org/10.1111/j.1365-2486.2009.01914.x (2010).

  • 21.

    Dalton, D. T. et al. Laboratory survival of Drosophila suzukii under simulated winter conditions of the Pacific Northwest and seasonal field trapping in five primary regions of small and stone fruit production in the United States. Pest Management Science 67, 1368–1374, https://doi.org/10.1002/ps.2280 (2011).

  • 22.

    Taylor, C. M., Coffey, P. L., Hamby, K. A. & Dively, G. P. Laboratory rearing of Halyomorpha halys: methods to optimize survival and fitness of adults during and after diapause. Journal of Pest Science 90, 1069–1077, https://doi.org/10.1007/s10340-017-0881-9 (2017).

    • Article
    • Google Scholar
  • 23.

    Bosch, J. & Kemp, W. P. Effect of Wintering Duration and Temperature on Survival and Emergence Time in Males of the Orchard Pollinator Osmia lignaria (Hymenoptera: Megachilidae). Environmental Entomology 32, 711–716, https://doi.org/10.1603/0046-225X-32.4.711 (2003).

    • Article
    • Google Scholar
  • 24.

    Stuhldreher, G., Hermann, G. & Fartmann, T. Cold-adapted species in a warming world – an explorative study on the impact of high winter temperatures on a continental butterfly. Entomologia Experimentalis et Applicata 151, 270–279, https://doi.org/10.1111/eea.12193 (2014).

    • Article
    • Google Scholar
  • 25.

    Xiao, H., Chen, J., Chen, L., Chen, C. & Wu, S. Exposure to mild temperatures decreases overwintering larval survival and post-diapause reproductive potential in the rice stem borer Chilo suppressalis (J Pest Sci, 10.1007/s10340-016-0769-0). Journal of Pest Science 90, 127, https://doi.org/10.1007/s10340-016-0799-7 (2017).

    • Article
    • Google Scholar
  • 26.

    Aukema, B. H. et al. Movement of outbreak populations of mountain pine beetle: Influences of spatiotemporal patterns and climate. Ecography 31, 348–358, https://doi.org/10.1111/j.0906-7590.2007.05453.x (2008).

    • Article
    • Google Scholar
  • 27.

    Caminade, C. et al. Suitability of European climate for the Asian tiger mosquito Aedes albopictus: recent trends and future scenarios. Journal of The Royal Society Interface 9, 2708–2717, https://doi.org/10.1098/rsif.2012.0138 (2012).

  • 28.

    Enriquez, T., Ruel, D., Charrier, M. & Colinet, H. Effects of fluctuating thermal regimes on cold survival and life history traits of the spotted wing Drosophila (Drosophila suzukii). Insect Science 27, 317–335, https://doi.org/10.1111/1744-7917.12649 (2020).

  • 29.

    Xing, K., Hoffmann, A. A., Zhao, F. & Ma, C. S. Wide diurnal temperature variation inhibits larval development and adult reproduction in the diamondback moth. Journal of Thermal Biology 84, 8–15, https://doi.org/10.1016/j.jtherbio.2019.05.013 (2019).

  • 30.

    Colinet, H., Sinclair, B. J., Vernon, P. & Renault, D. Insects in Fluctuating Thermal Environments. Annual Review of Entomology 60, 123–140, https://doi.org/10.1146/annurev-ento-010814-021017 (2015).

  • 31.

    Berkvens, N., Bale, J. S., Berkvens, D., Tirry, L. & De Clercq, P. Cold tolerance of the harlequin ladybird Harmonia axyridis in Europe. Journal of Insect Physiology 56, 438–444, https://doi.org/10.1016/j.jinsphys.2009.11.019 (2010).

  • 32.

    Brown, P. M. J. et al. The global spread of Harmonia axyridis (Coleoptera: Coccinellidae): Distribution, dispersal and routes of invasion. BioControl 56, 623–641, https://doi.org/10.1007/s10526-011-9379-1 (2011).

    • Article
    • Google Scholar
  • 33.

    Lombaert, E. et al. Inferring the origin of populations introduced from a genetically structured native range by approximate Bayesian computation: Case study of the invasive ladybird Harmonia axyridis. Molecular Ecology 20, 4654–4670, https://doi.org/10.1111/j.1365-294X.2011.05322.x (2011).

  • 34.

    Brown, P. M. J. et al. Harmonia axyridis in Europe: Spread and distribution of a non-native coccinellid. BioControl 53, 5–21, https://doi.org/10.1007/978-1-4020-6939-0_2 (2008).

    • Article
    • Google Scholar
  • 35.

    Roy, H. E. et al. The harlequin ladybird, Harmonia axyridis: global perspectives on invasion history and ecology. Biological Invasions 18, 997–1044, https://doi.org/10.1007/s10530-016-1077-6 (2016).

    • Article
    • Google Scholar
  • 36.

    Camacho-Cervantes, M., Ortega-Iturriaga, A. & Del-Val, E. From effective biocontrol agent to successful invader: the harlequin ladybird (Harmonia axyridis) as an example of good ideas that could go wrong. Peerj 5, https://doi.org/10.7717/peerj.3296 (2017).

  • 37.

    Hiller, T. & Haelewaters, D. A case of silent invasion: Citizen science confirms the presence of Harmonia axyridis (Coleoptera, Coccinellidae) in Central America. Plos One 14, e0220082, https://doi.org/10.1371/journal.pone.0220082 (2019).

  • 38.

    Ukrainsky, A. S. & Orlova-Bienkowskaja, M. J. Expansion of Harmonia axyridis Pallas (Coleoptera: Coccinellidae) to European Russia and adjacent regions. Biological Invasions 16, 1003–1008, https://doi.org/10.1007/s10530-013-0571-3 (2014).

    • Article
    • Google Scholar
  • 39.

    Barahona-Segovia, R. M., Grez, A. A. & Bozinovic, F. Testing the hypothesis of greater eurythermality in invasive than in native ladybird species: From physiological performance to life-history strategies. Ecological Entomology 41, 182–191, https://doi.org/10.1111/een.12287 (2016).

    • Article
    • Google Scholar
  • 40.

    Grez, A. A., Zaviezo, T., Roy, H. E., Brown, P. M. J. & Segura, B. In the shadow of the condor: invasive Harmonia axyridis found at very high altitude in the Chilean Andes. Insect Conservation and Diversity 10, 483–487, https://doi.org/10.1111/icad.12258 (2017).

    • Article
    • Google Scholar
  • 41.

    Danks, H. V. Insect Dormancy: An Ecological Perspective. Biological Survey of Canada (Terrestrial Arthropods), 433 (1987).

  • 42.

    Hodek, I., van Emden, H. F. & Honěk, A. Ecology and Behaviour of the Ladybird beetles (Coccinellidae). 561 (2012).

  • 43.

    Labrie, G., Coderre, D. & Lucas, E. Overwintering Strategy of Multicolored Asian Lady Beetle (Coleoptera: Coccinellidae): Cold-Free Space as a Factor of Invasive Success. Annals of the Entomological Society of America 101, 860–866, https://doi.org/10.1093/aesa/101.5.860 (2008).

    • Article
    • Google Scholar
  • 44.

    Raak-Van Den Berg, C. L., De Jong, P. W., Hemerik, L. & Van Lenteren, J. C. Diapause and post-diapause quiescence demonstrated in overwintering Harmonia axyridis (Coleoptera: Coccinellidae) in northwestern Europe. European Journal of Entomology 110, 585–591, https://doi.org/10.14411/eje.2013.079 (2013).

    • Article
    • Google Scholar
  • 45.

    Reznik, S. Y., Dolgovskaya, M. Y., Ovchinnikov, A. N. & Belyakova, N. A. Weak photoperiodic response facilitates the biological invasion of the harlequin ladybird Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae). Journal of Applied Entomology 139, 241–249, https://doi.org/10.1111/jen.12158 (2015).

    • Article
    • Google Scholar
  • 46.

    Falt-Nardmann, J. J. J. et al. The recent northward expansion of Lymantria monacha in relation to realised changes in temperatures of different seasons. Forest Ecology and Management 427, 96–105, https://doi.org/10.1016/j.foreco.2018.05.053 (2018).

    • Article
    • Google Scholar
  • 47.

    Sinclair, B. J. & Marshall, K. E. The many roles of fats in overwintering insects. The Journal of Experimental Biology 221, jeb161836, https://doi.org/10.1242/jeb.161836 (2018).

  • 48.

    Lidwien Raak-van den Berg, C., Stam, J. M., De Jong, P. W., Hemerik, L. & van Lenteren, J. C. Winter survival of Harmonia axyridis in The Netherlands. Biological Control 60, 68–76, https://doi.org/10.1016/j.biocontrol.2011.10.001 (2012).

    • Article
    • Google Scholar
  • 49.

    Yang, X.-B., Zhang, Y.-M., Henne, D. C. & Liu, T.-X. Life Tables of Bactericera cockerelli (Hemiptera: Triozidae) on Tomato Under Laboratory and Field Conditions in Southern Texas. Florida Entomologist 96, 904–913, https://doi.org/10.1653/024.096.0326 (2013).

    • Article
    • Google Scholar
  • 50.

    Řeřicha, M., Dobeš, P., Hyršl, P. & Knapp, M. Ontogeny of protein concentration, haemocyte concentration and antimicrobial activity against Escherichia coli in haemolymph of the invasive harlequin ladybird Harmonia axyridis (Coleoptera: Coccinellidae). Physiological Entomology 43, 51–59, https://doi.org/10.1111/phen.12224 (2018).

  • 51.

    Knapp, M. & Nedvěd, O. Gender and Timing during Ontogeny Matter: Effects of a Temporary High Temperature on Survival, Body Size and Colouration in Harmonia axyridis. PLoS ONE 8, e74984, https://doi.org/10.1371/journal.pone.0074984 (2013).

  • 52.

    Aggarwal, D. D. Physiological basis of starvation resistance in Drosophila leontia: analysis of sexual dimorphism. Journal of Experimental Biology 217, 1849–1859, https://doi.org/10.1242/jeb.096792 (2014).

  • 53.

    Knapp, M. Relative importance of sex, pre-starvation body mass and structural body size in the determination of exceptional starvation resistance of Anchomenus dorsalis (Coleoptera: Carabidae). PLoS ONE 11, e151459, https://doi.org/10.1371/journal.pone.0151459 (2016).

  • 54.

    Knapp, M. & Knappova, J. Measurement of body condition in a common carabid beetle, Poecilus cupreus: a comparison of fresh weight, dry weight, and fat content. Journal of Insect Science 13(article), 6, https://doi.org/10.1673/031.013.0601 (2013).

  • 55.

    Gergs, A. & Jager, T. Body size-mediated starvation resistance in an insect predator. Journal of Animal Ecology 83, 758–768, https://doi.org/10.1111/1365-2656.12195 (2014).

  • 56.

    Kovacs, J. L. & Goodisman, M. A. D. Effects of Size, Shape, Genotype, and Mating Status on Queen Overwintering Survival in the Social Wasp Vespula maculifrons. Environmental Entomology 41, 1612–1620, https://doi.org/10.1603/en12023 (2012).

  • 57.

    Sgolastra, F. et al. The long summer: Pre-wintering temperatures affect metabolic expenditure and winter survival in a solitary bee. Journal of Insect Physiology 57, 1651–1659, https://doi.org/10.1016/j.jinsphys.2011.08.017 (2011).

  • 58.

    Therneau, T. M. Package ‘coxme’: Mixed Effects Cox Models, version 2.2-10. (2018).

  • 59.

    R Development Core Team. A language and environment for statistical computing. Available at http://www.R-project.org, (2018).

  • 60.

    Hothorn, T., Bretz, F. & Westfall, P. Simultaneous inference in general parametric models. Biometrical Journal 50, 346–363, https://doi.org/10.1002/bimj.200810425 (2008).

  • 61.

    Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & Team, R. D. C. Nlme: linear and nonlinear mixed effects models. R package version 3.1-107. Available at https://cran.r-project.org/web/packages/nlme/nlme.pdf, (2018).

  • 62.

    Ripley, B. et al. Package ‘MASS’, version 7.3-50. (2018).


  • Source: Ecology - nature.com

    Emissions of several ozone-depleting chemicals are larger than expected

    New sensor could help prevent food waste