in

Endemism patterns are scale dependent

  • 1.

    Wiens, J. A., Rotenberry, J. T. & Van Horne, B. Habitat occupancy patterns of North American shrubsteppe birds: the effect of spatial scale. Oikos 48, 132–147 (1987).

    • Article
    • Google Scholar
  • 2.

    Wiens, J. A. Spatial scaling in ecology. Funct. Ecol. 3, 385–397 (1989).

    • Article
    • Google Scholar
  • 3.

    Levin, S. A. The problem of pattern and scale in ecology. Ecology 73, 1943–1967 (1992).

    • Article
    • Google Scholar
  • 4.

    Schneider, D. C. Quantitative ecology: spatial and temporal scaling (Academic Press, San Diego, CA, 1994).

  • 5.

    Henderson-Sellers, A., Wilson, M. F. & Thomas, G. The effect of spatial resolution on archives of land cover type. Clim. Change 7, 391–402 (1985).

  • 6.

    Meentemeyer, V. & Box, E. O. in Landscape heterogeneity and disturbance (New York: Springer-Verlag, 1987).

  • 7.

    Quintero, I. & Jetz, W. Global elevational diversity and diversification of birds. Nature 555, 246–250 (2018).

  • 8.

    Rahbek, C. & Graves, G. R. Multiscale assessment of patterns of avian species richness. Proc. Natl Acad. Sci. USA 98, 4534–4539 (2001).

  • 9.

    Willis, K. J. & Whittaker, R. J. Species diversity—scale matters. Science 295, 1245–1248 (2002).

  • 10.

    Rahbek, C. The role of spatial scale and the perception of large-scale species-richness patterns. Ecol. Lett. 8, 224–239 (2005).

    • Article
    • Google Scholar
  • 11.

    Mykrä, H., Heino, J. & Muotka, T. Scale‐related patterns in the spatial and environmental components of stream macroinvertebrate assemblage variation. Glob. Ecol. Biogeogr. 16, 149–159 (2007).

    • Article
    • Google Scholar
  • 12.

    Rahbek, C., Gotelli, N. J., Colwell, R. K., Entsminger, G. L., Rangel, T. F. L. V. B. & Graves, G. R. Predicting continental-scale patterns of bird species richness with spatially explicit models. Proc. R. Soc. B 274, 165–174 (2007).

  • 13.

    Belmaker, J. & Jetz, W. Cross‐scale variation in species richness–environment associations. Glob. Ecol. Biogeogr. 20, 464–474 (2011).

    • Article
    • Google Scholar
  • 14.

    Jarosik, V. & Lapchin, L. An experimental investigation of patterns of parasitism at three spatial scales in an aphid-parasitoid system (Hymenoptera: Aphidiidae). Eur. J. Entomol. 98, 295–299 (2001).

    • Article
    • Google Scholar
  • 15.

    Gunton, R. M. & Kunin, W. E. Density effects at multiple scales in an experimental plant population. J. Ecol. 95, 435–445 (2007).

    • Article
    • Google Scholar
  • 16.

    Gunton, R. M. & Kunin, W. E. Density‐dependence at multiple scales in experimental and natural plant populations. J. Ecol. 97, 567–580 (2009).

    • Article
    • Google Scholar
  • 17.

    Hartley, S. & Kunin, W. E. Scale dependency of rarity, extinction risk, and conservation priority. Conserv. Biol. 17, 1559–1570 (2003).

    • Article
    • Google Scholar
  • 18.

    Davies, K. F., Chesson, P., Harrison, S., Inouye, B. D., Melbourne, B. A. & Rice, K. J. Spatial heterogeneity explains the scale dependence of the native-exotic diversity relationship. Ecology 86, 1602–1610 (2005).

    • Article
    • Google Scholar
  • 19.

    Menendez, R. & Thomas, C. D. Metapopulation structure depends on spatial scale in the host-specific moth Wheeleria spilodactylus (Lepidoptera: Pterophoridae). J. Anim. Ecol. 69, 935–951 (2000).

    • Article
    • Google Scholar
  • 20.

    Englund, G. & Hamback, P. A. Scale dependence of immigration rates: models, metrics and data. J. Anim. Ecol. 76, 30–35 (2007).

  • 21.

    Peterson, T. A. & Watson, D. M. Problems with areal definitions of endemism: the effects of spatial scaling. Divers. Distrib. 4, 189–194 (1998).

    • Article
    • Google Scholar
  • 22.

    Storch, D. & Šizling, A. L. The concept of taxon invariance in ecology: do diversity patterns vary with changes in taxonomic resolution? Folia Geobot. 43, 329–344 (2008).

    • Article
    • Google Scholar
  • 23.

    Ochoa-Ochoa, L. M., Campbell, J. A. & Flores-Villela, O. A. Patterns of richness and endemism of the Mexican herpetofauna, a matter of spatial scale? Biol. J. Linn. Soc. 111, 305–316 (2014).

    • Article
    • Google Scholar
  • 24.

    Keil, P., Storch, D. & Jetz, W. On the decline of biodiversity due to area loss. Nat. Commun. 6, 8837 (2015).

  • 25.

    Graham, C. H., Storch, D. & Machac, A. Phylogenetic scale in ecology and evolution. Glob. Ecol. Biogeogr. 27, 175–187 (2018).

    • Article
    • Google Scholar
  • 26.

    IUCN Standards and Petitions Committee 2019. Guidelines for Using the IUCN Red List Categories and Criteria. Version 14. Prepared by the Standards and Petitions Committee. http://www.iucnredlist.org/documents/RedListGuidelines.pdf.

  • 27.

    Crisp, M. D., Laffan, S., Linder, H. P. & Monro, A. Endemism in the Australian flora. J. Biogeogr. 28, 183–198 (2001).

    • Article
    • Google Scholar
  • 28.

    Laffan, S. W. & Crisp, M. D. Assessing endemism at multiple spatial scales, with an example from the Australian vascular flora. J. Biogeogr. 30, 511–520 (2003).

    • Article
    • Google Scholar
  • 29.

    Rosauer, D., Laffan, S. W., Crisp, M. D., Donnellan, C. & Cook, L. G. Phylogenetic endemism: a new approach for identifying geographical concentrations of evolutionary history. Mol. Ecol. 18, 4061–4072 (2009).

  • 30.

    Laity, T. et al. Phylodiversity to inform conservation policy: an Australian example. Sci. Total Environ. 534, 131–143 (2015).

  • 31.

    Rosauer, D. F. & Jetz, W. Phylogenetic endemism in terrestrial mammals. Glob. Ecol. Biogeogr. 24, 168–179 (2015).

    • Article
    • Google Scholar
  • 32.

    Daru, B. H., le Roux, P. C., Gopalraj, J., Park, D. S., Holt, B. G. & Greve, M. Spatial overlaps between the global protected areas network and terrestrial hotspots of evolutionary diversity. Glob. Ecol. Biogeogr. 28, 757–766 (2019).

    • Article
    • Google Scholar
  • 33.

    Faurby, S., Eiserhardt, W. L. & Svenning, J. Strong effects of variation in taxonomic opinion on diversification analyses. Methods Ecol. Evol. 7, 4–13 (2016).

    • Article
    • Google Scholar
  • 34.

    Collen, B. et al. Investing in evolutionary history: implementing a phylogenetic approach for mammal conservation. Philos. Trans. R. Soc. B 366, 2611–2622 (2011).

    • Article
    • Google Scholar
  • 35.

    Burgin, C. J., Colella, J. P., Kahn, P. L. & Upham, N. S. How many species of mammals are there? J. Mammal. 99, 1–14 (2018).

    • Article
    • Google Scholar
  • 36.

    Sharpe, R. B. A hand-list of the genera and species of birds, Vol. 5 (British Museum, London, UK, 1909).

  • 37.

    Mayr, E. & Amadon, D. A classification of recent birds. Am. Mus. Novit. 1496, 1–42 (1951).

    • Google Scholar
  • 38.

    Gill, F. & Donsker, D. IOC World Bird List v9.1. https://doi.org/10.14344/IOC.ML.9.1., 2019.

  • 39.

    Dillon, S. & Fjeldså, J. The implications of different species concepts for describing biodiversity patterns and assessing conservation needs for African birds. Ecography 28, 682–692 (2005).

    • Article
    • Google Scholar
  • 40.

    Robuchon, M. et al. Species splitting increases estimates of evolutionary history at risk. Biol. Conserv. 235, 27–35 (2019).

    • Article
    • Google Scholar
  • 41.

    Jarzyna, M. A. & Jetz, W. Taxonomic and functional diversity change is scale dependent. Nat. Commun. 9, 2565 (2018).

  • 42.

    Boersma, P. D. An ecological and behavioral study of the Galapagos penguin. Living Bird. 15, 43–93 (1976).

    • Google Scholar
  • 43.

    Park, D. S., Worthington, S. & Xi, Z. Taxon sampling effects on the quantification and comparison of community phylogenetic diversity. Mol. Ecol. 27, 1296–1308 (2018).

  • 44.

    Cracraft, J. Historical biogeography and patterns of differentiation within the South America avifauna: areas of endemism. Ornithol. Monogr. 36, 49–84 (1985).

    • Article
    • Google Scholar
  • 45.

    Morrone, J. J. On the identification of areas of endemism. Syst. Biol. 43, 438–441 (1994).

    • Article
    • Google Scholar
  • 46.

    Morrone, J. J. & Crisci, J. V. Historical biogeography: introduction to methods. Annu. Rev. Ecol. Syst. 26, 373–401 (1995).

    • Article
    • Google Scholar
  • 47.

    Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).

  • 48.

    Ceballos, G. & Ehrlich, P. R. Global mammal distributions, biodiversity hotspots, and conservation. Proc. Natl Acad. Sci. USA 103, 19374–19379 (2006).

  • 49.

    Jansson, R. Global patterns in endemism explained by past climatic change. Proc. R. Soc. B 270, 583–590 (2003).

  • 50.

    Marin, J. & Hedges, S. S. B. Time best explains global variation in species richness of amphibians, birds and mammals. J. Biogeogr. 43, 1069–1079 (2016).

    • Article
    • Google Scholar
  • 51.

    Fjeldsa, J., Lambin, E. & Mertens, B. Correlation between endemism and local ecoclimatic stability documented by comparing Andean bird distributions and remotely sensed land surface data. Ecography 22, 63–78 (1999).

    • Article
    • Google Scholar
  • 52.

    Daru, B. H., Elliott, T. L., Park, D. S. & Davies, T. J. Understanding the processes underpinning patterns of phylogenetic regionalization. Trends Ecol. Evol. 32, 845–860 (2017).

  • 53.

    Kotliar, N. B. & Wiens, J. A. Multiple scales of patchiness and patch structure—a hierarchical framework for the study of heterogeneity. Oikos 59, 253–260 (1990).

    • Article
    • Google Scholar
  • 54.

    Lester, S. E., Ruttenberg, B. I., Gaines, S. D. & Kinlan, B. P. The relationship between dispersal ability and geographic range size. Ecol. Lett. 10, 745–758 (2007).

  • 55.

    Jetz, W., Thomas, G. H., Joy, J. B. & Mooers, A. Ø. The global diversity of birds in space and time. Nature 491, 444–448 (2012).

  • 56.

    Jetz, W., Thomas, G. H., Joy, J. B., Redding, D. W., Hartmann, K. & Mooers, A. Ø. Global distribution and conservation of evolutionary distinctness in birds. Curr. Biol. 24, 919–930 (2014).

  • 57.

    Hendriks, A. J., Willers, W. J. C., Lenders, H. J. R. & Leuven, R. S. E. W. Towards a coherent allometric framework for individual home ranges, key population patches and geographic ranges. Ecography 32, 929–942 (2009).

    • Article
    • Google Scholar
  • 58.

    Rabinowitz, D. in The biological aspects of rare plant conservation (New York: John Wiley & Sons Ltd, 1981).

  • 59.

    Morrison, W. R. et al. The impact of taxonomic change on conservation: does it kill, can it save, or is it just irrelevant? Biol. Conserv. 142, 3201–3206 (2009).

    • Article
    • Google Scholar
  • 60.

    Daru, B. H., Karunarathne P. & Schliep K. phyloregion: R package for biogeographic regionalization and spatial conservation. Preprint at https://doi.org/10.1101/2020.02.12.945691 (2020).

  • 61.

    Faith, D. P. Threatened species and the potential loss of phylogenetic diversity: conservation scenarios based on estimated extinction probabilities and phylogenetic risk analysis. Conserv. Biol. 22, 1461–1470 (2008).

  • 62.

    Cadotte, M. W. & Davies, T. J. Rarest of the rare: advances in combining evolutionary distinctiveness and scarcity to inform conservation at biogeographical scales. Divers. Distrib. 16, 376–385 (2010).

    • Article
    • Google Scholar
  • 63.

    Antonelli, A. Biogeography: drivers of bioregionalization. Nat. Ecol. Evol. 1, 0114 (2017).

    • Article
    • Google Scholar
  • 64.

    Jetz, W. et al. Essential biodiversity variables for mapping and monitoring species populations. Nat. Ecol. Evol. 3, 539–551 (2019).

  • 65.

    Willig, M. R., Kaufman, D. M. & Stevens, R. D. Latitudinal gradients of biodiversity: pattern, process, scale and synthesis. Annu. Rev. Ecol. Evol. Syst. 34, 273–309 (2003).

    • Article
    • Google Scholar
  • 66.

    Jablonski, D., Roy, K. & Valentine, J. W. Out of the tropics: evolutionary dynamics of the Latitudinal Diversity Gradient. Science 314, 102–106 (2006).

  • 67.

    Kier, G. et al. A global assessment of endemism and species richness across island and mainland regions. Proc. Natl Acad. Sci. USA 106, 9322–9327 (2009).

  • 68.

    Singh, J. J. Study on the development of transboundary natural resource management areas in southern Africa—Global review; lessons learned (Washington: Biodiversity Support Program, 1999).

  • 69.

    Trouwborst, A. Managing the carnivore comeback: international and EU species protection law and the return of lynx, wolf and bear to western europe. J. Environ. Law 22, 1092–1100 (2010).

    • Article
    • Google Scholar
  • 70.

    Epstein, Y. Population based species management across legal boundaries: the Bern Convention, Habitats Directive, and the gray wolf in Scandinavia. Georget. Int. Environ. Law Rev. 25, 549–587 (2013).

    • Google Scholar
  • 71.

    Dallimer, M. & Strange, N. Why socio-political borders and boundaries matter in conservation. Trends Ecol. Evol. 30, 132–139 (2015).

  • 72.

    Hurlbert, A. H. & White, E. P. Disparity between range map- and survey-based analyses of species richness: patterns, processes and implications. Ecol. Lett. 8, 319–327 (2005).

    • Article
    • Google Scholar
  • 73.

    Hurlbert, A. H. & Jetz, W. Species richness, hotspots, and the scale dependence of range maps in ecology and conservation. Proc. Natl Acad. Sci. USA 104, 13384–13389 (2007).

  • 74.

    Jetz, W., Sekercioglu, C. H. & Watson, J. E. M. Ecological correlates and conservation implications of overestimating species geographic ranges. Conserv. Biol. 22, 110–119 (2008).

  • 75.

    Rahbek, C., Borregaard, M. K., Colwell, R. K., Dalsgaard, B., Holt, B. G., Morueta-Holme, N., Nogues-Bravo, D., Whittaker, R. J. & Fjeldså, J. Humboldt’s enigma: What causes global patterns of mountain biodiversity? Science 365, 1108–1113 (2019).

  • 76.

    Grytnes, J. A. & Vetaas, O. R. Species richness and altitude: a comparison between null models and interpolated plant species richness along the Himalayan altitudinal gradient, Nepal. Am. Nat. 159, 294–304 (2002).

  • 77.

    Park, D. S. & Davis, C. C. Implications and alternatives of assigning climate data to geographical centroids. J. Biogeogr. 44, 2188–2198 (2017).

    • Article
    • Google Scholar
  • 78.

    Rodrigues, A. S. L. et al. Global gap analysis: Priority regions for expanding the global protected-area network. Bioscience 54, 1092–1100 (2004).

    • Article
    • Google Scholar
  • 79.

    Venter, O. et al. Targeting global protected area expansion for imperiled biodiversity. PLoS Biol. 12, e1001891 (2014).

  • 80.

    Orme, C. D. et al. Global hotspots of species richness are not congruent with endemism or threat. Nature 436, 1016–1019 (2005).

  • 81.

    BirdLife International and NatureServe. Bird species distribution maps of the world (Cambridge, UK: BirdLife International, 2014.

  • 82.

    Frost, D. R. Amphibian species of the world: An online reference (Version 5.3). http://research.amnh.org/vz/herpetology/amphibia/index.php. (2009).

  • 83.

    Jetz, W. & Pyron, R. R. A. The interplay of past diversification and evolutionary isolation with present imperilment across the amphibian tree of life. Nat. Ecol. Evol. 2, 850–858 (2018).

  • 84.

    IUCN and UNEP-WCMC. The World Database on Protected Areas (WDPA) (Cambridge, UK: UNEP‐WCMC). www.protectedplanet.net. (2015).

  • 85.

    Forest, F. et al. Preserving the evolutionary potential of floras in biodiversity hotspots. Nature 445, 757–760 (2007).

  • 86.

    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).

    • Article
    • Google Scholar
  • 87.

    Hijmans, R. J. Raster: Geographic data analysis and modeling (R package version 3.0-12, http://CRAN.R-project.org/package=raster, 2020).

  • 88.

    Verbeke, G. & Molenberghs, G. Linear mixed models for longitudinal data (Springer-Verlag, New-York, 2000).

  • 89.

    Bivand, R. & Wong, D. W. S. Comparing implementations of global and local indicators of spatial association. TEST 27, 716–748 (2018).

  • 90.

    R Core Team. R: A language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, Austria, 2020).

  • 91.

    Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R Core Team. nlme: Linear and nonlinear mixed effects models (R package version 3.1-145, http://CRAN.R-project.org/package=nlme, 2020).

  • 92.

    Daru, B. H., Farooq, H., Antonelli, A. & Faurby, S. Endemism patterns are scale dependent, v2, Dryad, Dataset, https://doi.org/10.5061/dryad.wh70rxwhs (2020).


  • Source: Ecology - nature.com

    The intensification of Arctic warming as a result of CO2 physiological forcing

    Accelerating invasion potential of disease vector Aedes aegypti under climate change