in

Enhanced fish production during a period of extreme global warmth

  • 1.

    FAO. State of the world’s fisheries and aquaculture. State of the world’s fisheries and aquaculture 3, (2018).

  • 2.

    Nelson, J. S., Grande, T. C. & Wilson, M. V. Fishes of the World. (John Wiley & Sons, Ltd, 2016).

  • 3.

    Ryther, J. H. Photosynthesis and fish production in the sea. Science 166, 72–76 (1969).

    ADS  CAS  Article  Google Scholar 

  • 4.

    Lotze, H. K. et al. Global ensemble projections reveal trophic amplification of ocean biomass declines with climate change. Proc. Natl Acad. Sci. USA 116, 12907–12912 (2019).

    CAS  Article  Google Scholar 

  • 5.

    Moore, J. K. et al. Sustained climate warming drives declining marine biological productivity. Science 359, 1139–1143 (2018).

    ADS  CAS  Article  Google Scholar 

  • 6.

    Sommer, U., Stibor, H., Katechakis, A., Sommer, F. & Hansen, T. Pelagic food web configurations at different levels of nutrient richness and their implications for the ratio fish production: primary production. Hydrobiologia 484, 11–20 (2002).

    Article  Google Scholar 

  • 7.

    Fu, W., Randerson, J. T. & Moore, J. K. Climate change impacts on net primary production (NPP) and export production (EP) regulated by increasing stratification and phytoplankton community structure in the CMIP5 models. Biogeosciences 13, 5151–5170 (2016).

    ADS  Article  Google Scholar 

  • 8.

    Mora, C. et al. Biotic and human vulnerability to projected changes in ocean biogeochemistry over the 21st century. PLoS Biol. 11, e1001682 (2013).

    CAS  Article  Google Scholar 

  • 9.

    Stock, C. A. et al. Reconciling fisheries catch and ocean productivity. Proc. Natl Acad. Sci. USA E1441, E1441–E1449 (2017).

    Article  CAS  Google Scholar 

  • 10.

    Chust, G. et al. Biomass changes and trophic amplification of plankton in a warmer ocean. Glob. Chang. Biol. 2010, 2124–2139 (2014).

    ADS  Article  Google Scholar 

  • 11.

    Blanchard, J. L. et al. Potential consequences of climate change for primary production and fish production in large marine ecosystems. Philos. Trans. R. Soc. B Biol. Sci. 367, 2979–2989 (2012).

    Article  Google Scholar 

  • 12.

    Britten, G. L., Dowd, M. & Worm, B. Changing recruitment capacity in global fish stocks. Proc. Natl Acad. Sci. USA 113, 134–139 (2015).

    ADS  Article  CAS  Google Scholar 

  • 13.

    Free, C. M. et al. Impacts of historical warming on marine fisheries production. Science 983, 979–983 (2019).

    ADS  Article  CAS  Google Scholar 

  • 14.

    Cheung, W. W. L. et al. Large-scale redistribution of maximum fisheries catch potential in the global ocean under climate change. Glob. Chang. Biol. 16, 24–35 (2010).

    ADS  Article  Google Scholar 

  • 15.

    Gibbs, S. J., Bralower, T. J., Bown, P. R., Zachos, J. C. & Bybell, L. M. Shelf and open-ocean calcareous phytoplankton assemblages across the Paleocene-Eocene thermal maximum: Implications for global productivity gradients. Geology 34, 233–236 (2006).

    ADS  CAS  Article  Google Scholar 

  • 16.

    Muttoni, G. & Kent, D. V. Widespread formation of cherts during the early Eocene climate optimum. Palaeogeogr. Palaeoclimatol. Palaeoecol. 253, 348–362 (2007).

    Article  Google Scholar 

  • 17.

    Faul, K. L. & Delaney, M. L. A comparison of early Paleogene export productivity and organic carbon burial flux for Maud Rise, Weddell Sea, and Kerguelen Plateau, south Indian Ocean. Paleoceanography 25, 1–15 (2010).

  • 18.

    Witkowski, J., Bohaty, S. M., McCartney, K. & Harwood, D. M. Enhanced siliceous plankton productivity in response to middle Eocene warming at Southern Ocean ODP Sites 748 and 749. Palaeogeogr. Palaeoclimatol. Palaeoecol. 326–328, 78–94 (2012).

    Article  Google Scholar 

  • 19.

    Yasuhara, M. et al. Climatic forcing of Quaternary deep-sea benthic communities in the North Pacific Ocean. Paleobiology 38, 162–179 (2012).

    Article  Google Scholar 

  • 20.

    Lowery, C. M., Bown, P. R., Fraass, A. J. & Hull, P. M. Ecological response of plankton to environmental change thresholds for extinction. Annu. Rev. Earth Planet. Sci. 48, 1–27 (2020).

    Article  CAS  Google Scholar 

  • 21.

    Moore, J. K., Doney, S. C. & Lindsay, K. Upper ocean ecosystem dynamics and iron cycling in a global three-dimensional model. Glob. Biogeochem. Cycles 18, 1–21 (2004).

    Article  CAS  Google Scholar 

  • 22.

    O’Gorman, E. J. et al. Temperature effects on fish production across a natural thermal gradient. Glob. Chang. Biol. 22, 3206–3220 (2016).

    ADS  Article  Google Scholar 

  • 23.

    Maureaud, A. et al. Global change in the trophic functioning of marine food webs. PLoS ONE 12, 1–21 (2017).

    Article  CAS  Google Scholar 

  • 24.

    Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M. & Charnov, E. L. Effects of size and temperature on metabolic rate. Science 293, 2248–2251 (2001).

    ADS  CAS  Article  Google Scholar 

  • 25.

    Allen, A. P. & Gillooly, J. F. The mechanistic basis of the metabolic theory of ecology. Oikos 116, 1073–1077 (2007).

    Article  Google Scholar 

  • 26.

    Cheung, W. W. L. et al. Shrinking of fishes exacerbates impacts of global ocean changes on marine ecosystems. Nat. Clim. Chang. 3, 254–258 (2012).

    ADS  Article  Google Scholar 

  • 27.

    Daufresne, M., Lengfellner, K. & Sommer, U. Global warming benefits the small in aquatic ecosystems. Proc. Natl Acad. Sci. USA 106, 12788–12793 (2009).

    ADS  CAS  Article  Google Scholar 

  • 28.

    Chen, B., Landry, M. R., Huang, B. & Liu, H. Does warming enhance the effect of microzooplankton grazing on marine phytoplankton in the ocean? Limnol. Oceanogr. 57, 519–526 (2012).

    ADS  CAS  Article  Google Scholar 

  • 29.

    Schmoker, C., Hernández-León, S. & Calbet, A. Microzooplankton grazing in the oceans: impacts, data variability, knowledge gaps and future directions. J. Plankton Res. 35, 691–706 (2013).

    Article  Google Scholar 

  • 30.

    Persson, L. Temperature-induced shift in foraging ability in two fish species, roach (Rutilus rutilus) and perch (Perca fluviatilis): implications for coexistence between poikilotherms. J. Anim. Ecol. 55, 829–839 (1986).

    Article  Google Scholar 

  • 31.

    Grigaltchik, V. S., Ward, A. J. W. & Seebacher, F. Thermal acclimation of interactions: Differential responses to temperature change alter predator-prey relationship. Proc. R. Soc. B Biol. Sci. 279, 4058–4064 (2012).

    Article  Google Scholar 

  • 32.

    Öhlund, G., Hedström, P., Norman, S., Hein, C. L. & Englund, G. Temperature dependence of predation depends on the relative performance of predators and prey. Proc. R. Soc. B Biol. Sci. 282, 1–8 (2014).

  • 33.

    Flombaum, P., Wang, W. L., Primeau, F. W. & Martiny, A. C. Global picophytoplankton niche partitioning predicts overall positive response to ocean warming. Nat. Geosci. 13, 116–120 (2020).

  • 34.

    Anagnostou, E. et al. Changing atmospheric CO2 concentration was the primary driver of early Cenozoic climate. Nature 533, 380–384 (2016).

    ADS  CAS  Article  Google Scholar 

  • 35.

    Hyland, E. G. & Sheldon, N. D. Coupled CO2-climate response during the Early Eocene Climatic Optimum. Palaeogeogr. Palaeoclimatol. Palaeoecol. 369, 125–135 (2013).

    Article  Google Scholar 

  • 36.

    Meinshausen, M. et al. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim. Change 109, 213–241 (2011).

    ADS  CAS  Article  Google Scholar 

  • 37.

    Sibert, E. C., Cramer, K. L., Hastings, P. A. & Norris, R. D. Methods for isolation and quantification of microfossil fish teeth and elasmobranch dermal denticles (ichthyoliths) from marine sediments. Palaentologia Electron. 20, 1–14 (2017).

    Google Scholar 

  • 38.

    Sibert, E. C., Hull, P. M. & Norris, R. D. Resilience of Pacific pelagic fish across theCretaceous/Palaeogene mass extinction. Nat. Geosci. 7, 667–670 (2014).

    ADS  CAS  Article  Google Scholar 

  • 39.

    Sibert, E. C., Zill, M. E., Frigyik, E. T. & Norris, R. D. No state change in pelagic fish production and biodiversity during the Eocene–Oligocene transition. Nat. Geosci. 13, 238–242 (2020).

    ADS  CAS  Article  Google Scholar 

  • 40.

    Sibert, E., Norris, R., Cuevas, J. & Graves, L. Eighty-five million years of Pacific Ocean gyre ecosystem structure: long-term stability marked by punctuated change. Proc. Biol. Sci. 283, 20160189 (2016).

  • 41.

    Cramer, B. S., Miller, K. G., Barrett, P. J. & Wright, J. D. Late Cretaceous-Neogene trends in deep ocean temperature and continental ice volume: Reconciling records of benthic foraminiferal geochemistry (δ18O and Mg/Ca) with sea level history. J. Geophys. Res. Ocean. 116, 1–23 (2011).

    Article  CAS  Google Scholar 

  • 42.

    Irigoien, X. et al. Large mesopelagic fishes biomass and trophic efficiency in the open ocean. Nat. Commun. 5, 1–10 (2014).

    Article  CAS  Google Scholar 

  • 43.

    Sibert, E. C. & Norris, R. D. New Age of Fishes initiated by the Cretaceous − Paleogene mass extinction. Proc. Natl Acad. Sci. USA 112, 8537–8542 (2015).

    ADS  CAS  Article  Google Scholar 

  • 44.

    Sibert, E., Friedman, M., Hull, P., Hunt, G. & Norris, R. Two pulses of morphological diversification in Pacific pelagic fishes following the Cretaceous – Palaeogene mass extinction. Proc. R. Soc. B 285, 1–7 (2018).

    Article  Google Scholar 

  • 45.

    Armstrong, R. A. Grazing limitation and nutrient limitation in marine ecosystems: steady state solutions of an ecosystem model with multiple food chains. Limnol. Oceanogr. 39, 597–608 (1994).

    ADS  CAS  Article  Google Scholar 

  • 46.

    Maranon, E. Cell Size as a key determinant of phytoplankton metabolism and community structure. Ann. Rev. Mar. Sci. 7, 241–264 (2015).

    Article  Google Scholar 

  • 47.

    Knoll, A. H. & Follows, M. J. A bottom-up perspective on ecosystem change in Mesozoic oceans. Proc. R. Soc. B 283, 1–10 (2016).

    Article  Google Scholar 

  • 48.

    Zhou, L. & Kyte, F. T. Sedimentation history of the South Pacific pelagic clay province over the last 85 million years inferred from the geochemistry of Deep Sea Drilling Project Hole 596. Paleoceanography 7, 441–465 (1992).

    ADS  Article  Google Scholar 

  • 49.

    Harrison, J. S., Higgins, B. A. & Mehta, R. S. Scaling of dentition and prey size in the California moray (Gymnothorax mordax). Zoology 122, 16–26 (2017).

    Article  Google Scholar 

  • 50.

    Shimada, K. The relationship between tooth size and total body length in white shark. J. Foss. Res. 35, 28–33 (2002).

    Google Scholar 

  • 51.

    Pauly, D. & Christensen, V. Primary production required to sustain global fisheries. Nature 374, 255–257 (1995).

    ADS  CAS  Article  Google Scholar 

  • 52.

    Wirtz, K. W. A biomechanical and optimality-based derivation of prey-size dependencies in planktonic prey selection and ingestion rates. Mar. Ecol. Prog. Ser. 507, 81–94 (2014).

    ADS  Article  Google Scholar 


  • Source: Ecology - nature.com

    Ecological traits, genetic diversity and regional distribution of the macroalga Treptacantha elegans along the Catalan coast (NW Mediterranean Sea)

    Pushing the envelope with fusion magnets