in

Entomopathogenic nematodes from Mexico that can overcome the resistance mechanisms of the western corn rootworm

  • 1.

    Kaya, H. K. & Gaugler, R. Entomopathogenic Nematodes. Annu. Rev. Entomol. 38, 181–206, https://doi.org/10.1146/annurev.en.38.010193.001145 (1993).

    • Article
    • Google Scholar
  • 2.

    Kaya, H. K. et al. Status of entomopathogenic nematodes and their symbiotic bacteria from selected countries or regions of the world. Biol. Control 38, 134–155, https://doi.org/10.1016/j.biocontrol.2005.11.004 (2006).

    • Article
    • Google Scholar
  • 3.

    Hominick, W. M. Biogeography. Entomopathogenic nematology 1, 115–143, https://doi.org/10.1079/9780851995670.0115 (2002).

    • Article
    • Google Scholar
  • 4.

    Campos-Herrera, R. Nematode pathogenesis of insects and other pests. (Springer, 2015).

  • 5.

    Machado, R. A. R. et al. Photorhabdus khanii subsp. guanajuatensis subsp. nov., isolated from Heterorhabditis atacamensis, and Photorhabdus luminescens subsp. mexicana subsp. nov., isolated from Heterorhabditis mexicana entomopathogenic nematodes. Int. J. Syst. Evol. Microbiol. 69, 652–661, https://doi.org/10.1099/ijsem.0.003154 (2019).

  • 6.

    Machado, R. A. R. et al. Whole-genome-based revisit of Photorhabdus phylogeny: proposal for the elevation of most Photorhabdus subspecies to the species level and description of one novel species Photorhabdus bodei sp. nov., and one novel subspecies Photorhabdus laumondii subsp. clarkei subsp. nov. Int. J. Syst. Evol. Microbiol. 68, 2664–2681, https://doi.org/10.1099/ijsem.0.002820 (2018).

    • Article
    • Google Scholar
  • 7.

    Adams, B. J. et al. Biodiversity and systematics of nematode–bacterium entomopathogens. Biol. Control 38, 4–21, https://doi.org/10.1016/S1049-9644(06)00126-5 (2006).

    • Article
    • Google Scholar
  • 8.

    Brivio, M. F., Mastore, M. & Moro, M. The role of Steinernema feltiae body-surface lipids in host-parasite immunological interactions. Mol. Biochem. Parasitol. 135, 111–121, https://doi.org/10.1016/j.molbiopara.2004.01.012 (2004).

  • 9.

    Brivio, M. F., Pagani, M. & Restelli, S. Immune suppression of Galleria mellonella (Insecta, Lepidoptera) humoral defenses induced by Steinernema feltiae (Nematoda, Rhabditida): involvement of the parasite cuticle. Exp. Parasitol. 101, 149–156, https://doi.org/10.1016/s0014-4894(02)00111-x (2002).

  • 10.

    Toubarro, D., Avila, M. M., Montiel, R. & Simoes, N. A pathogenic nematode targets recognition proteins to avoid insect defenses. PLoS One 8, e75691, https://doi.org/10.1371/journal.pone.0075691 (2013).

  • 11.

    Castillo, J. C., Shokal, U. & Eleftherianos, I. Immune gene transcription in Drosophila adult flies infected by entomopathogenic nematodes and their mutualistic bacteria. J. Insect. Physiol. 59, 179–185, https://doi.org/10.1016/j.jinsphys.2012.08.003 (2013).

  • 12.

    Castillo, J. C., Reynolds, S. E. & Eleftherianos, I. Insect immune responses to nematode parasites. Trends Parasitol. 27, 537–547, https://doi.org/10.1016/j.pt.2011.09.001 (2011).

  • 13.

    Eleftherianos, I., ffrench-Constant, R. H., Clarke, D. J., Dowling, A. J. & Reynolds, S. E. Dissecting the immune response to the entomopathogen Photorhabdus. Trends Microbiol. 18, 552–560, https://doi.org/10.1016/j.tim.2010.09.006 (2010).

  • 14.

    Agrawal, A. A., Petschenka, G., Bingham, R. A., Weber, M. G. & Rasmann, S. Toxic cardenolides: chemical ecology and coevolution of specialized plant-herbivore interactions. New Phytol. 194, 28–45, https://doi.org/10.1111/j.1469-8137.2011.04049.x (2012).

  • 15.

    Opitz, S. E. W. & Müller, C. Plant chemistry and insect sequestration. Chemoecology 19, 117–154, https://doi.org/10.1007/s00049-009-0018-6 (2009).

  • 16.

    Erb, M. & Robert, C. A. M. Sequestration of plant secondary metabolites by insect herbivores: molecular mechanisms and ecological consequences. Curr. Opin. Insect. Sci. 14, 8–11, https://doi.org/10.1016/j.cois.2015.11.005 (2016).

  • 17.

    Petschenka, G. & Agrawal, A. A. How herbivores coopt plant defenses: natural selection, specialization, and sequestration. Curr. Opin. Insect. Sci. 14, 17–24, https://doi.org/10.1016/j.cois.2015.12.004 (2016).

  • 18.

    Heckel, D. G. Insect detoxification and sequestration strategies. Annu. Rev. Plant. Biol., 77–114, https://doi.org/10.1002/9781119312994.apr0507 (2018).

  • 19.

    Barbercheck, M. E. & Wang, J. Effect of cucurbitacin D on in vitro growth of Xenorhabdus and Photorhabdus spp., symbiotic bacteria of entomopathogenic nematodes. J. Invertebr. Pathol. 68, 141–145, https://doi.org/10.1006/jipa.1996.0071 (1996).

  • 20.

    Barbercheck, M. E., Wang, J. & Hirsh, I. S. Host plant effects on entomopathogenic nematodes. J. Invertebr. Pathol. 66, 169–177, https://doi.org/10.1006/jipa.1995.1080 (1995).

    • Article
    • Google Scholar
  • 21.

    Robert, C. A. M. et al. Sequestration and activation of plant toxins protect the western corn rootworm from enemies at multiple trophic levels. ELife 6, https://doi.org/10.7554/eLife.29307 (2017).

  • 22.

    Kuhlmann, U. & van der Burgt, W. A. C. M. Possibilities for biological control of the western corn rootworm, Diabrotica virgifera virgifera LeConte, in Central Europe. BioControl 19, 59N–68N (1998).

    • Google Scholar
  • 23.

    Gray, M. E., Sappington, T. W., Miller, N. J., Moeser, J. & Bohn, M. O. Adaptation and invasiveness of western corn rootworm: intensifying research on a worsening pest. Annu. Rev. Entomol. 54, 303–321, https://doi.org/10.1146/annurev.ento.54.110807.090434 (2009).

  • 24.

    Kiss, J. et al. Monitoring of western corn rootworm (Diabrotica virgifera virgifera Le Conte) in Europe 1992-2003. Western corn rootworm: Ecology and Management, 29–39 (2005).

  • 25.

    Szalai, M. et al. Generational growth rate estimates of Diabrotica virgifera virgifera populations (Coleoptera: Chrysomelidae). J. Pest. Sci. 84, 133–142 (2011).

    • Article
    • Google Scholar
  • 26.

    Frey, M., Schullehner, K., Dick, R., Fiesselmann, A. & Gierl, A. Benzoxazinoid biosynthesis, a model for evolution of secondary metabolic pathways in plants. Phytochemistry 70, 1645–1651, https://doi.org/10.1016/j.phytochem.2009.05.012 (2009).

  • 27.

    Wouters, F. C., Blanchette, B., Gershenzon, J. & Vassao, D. G. Plant defense and herbivore counter-defense: benzoxazinoids and insect herbivores. Phytochem. Rev. 15, 1127–1151, https://doi.org/10.1007/s11101-016-9481-1 (2016).

  • 28.

    Robert, C. A. M. et al. A specialist root herbivore exploits defensive metabolites to locate nutritious tissues. Ecol. Lett. 15, 55–64, https://doi.org/10.1111/j.1461-0248.2011.01708.x (2012).

  • 29.

    Hu, L. et al. Plant iron acquisition strategy exploited by an insect herbivore. Science 361, 694–697, https://doi.org/10.1126/science.aat4082 (2018).

  • 30.

    Zhang, X. et al. Plant defense resistance in natural enemies of a specialist insect herbivore. Proc. Natl. Acad. Sci. USA 116, 23174–23181, https://doi.org/10.1073/pnas.1912599116 (2019).

  • 31.

    Lombaert, E. et al. Colonization history of the western corn rootworm (Diabrotica virgifera virgifera) in North America: insights from random forest ABC using microsatellite data. Biological invasions 20, 665–677 (2018).

    • Article
    • Google Scholar
  • 32.

    Matsuoka, Y. et al. A single domestication for maize shown by multilocus microsatellite genotyping. Proc. Natl. Acad. Sci. USA 99, 6080–6084, https://doi.org/10.1073/pnas.052125199 (2002).

  • 33.

    Álvarez-Zagoya, R., Pérez-Domínguez, J. F., Márquez-Linares, M. A. & Almaraz-Abarca, N. Distribución de adultos de los géneros Diabrotica y Acalymma (Coleoptera: Chrysomelidae) en Durango. México. Sociedad Mexicana de Entomología y Colegio de Postgraduados. Entomología Mexicana 7, 405–410 (2008).

    • Google Scholar
  • 34.

    Marín-Jarillo, A. & Bujanos-Muñiz, R. Species of “white grubs” complex of the genus Phyllophaga in Guanajuato, Mexico. Agricultura Técnica en México 34, 349–355 (2008).

    • Google Scholar
  • 35.

    Marín-Jarillo, A. El género Diabrotica (Chrysomelidae: Galerucinae) en México. Los gusanos alfilerillos o raiceros. 1ª Ed. SAGARPA, SENASICA, CONACOFI. Guanuajuato, México., 80 p. (2012).

  • 36.

    Maag, D. et al. 3-β-D-Glucopyranosyl-6-methoxy-2-benzoxazolinone (MBOA-N-Glc) is an insect detoxification product of maize 1, 4-benzoxazin-3-ones. Phytochemistry 102, 97–105, https://doi.org/10.1016/j.phytochem.2014.03.018 (2014).

  • 37.

    Tang, C. Q. et al. The widely used small subunit 18S rDNA molecule greatly underestimates true diversity in biodiversity surveys of the meiofauna. Proc Natl Acad Sci USA 109, 16208–16212, https://doi.org/10.1073/pnas.1209160109 (2012).

  • 38.

    Vu, D. et al. Large-scale generation and analysis of filamentous fungal DNA barcodes boosts coverage for kingdom fungi and reveals thresholds for fungal species and higher taxon delimitation. Stud Mycol 92, 135–154, https://doi.org/10.1016/j.simyco.2018.05.001 (2019).

  • 39.

    Borg Dahl, M. et al. Genetic barcoding of dark‐spored myxomycetes (Amoebozoa)—Identification, evaluation and application of a sequence similarity threshold for species differentiation in NGS studies. Mol Ecol Resour 18, 306–318, https://doi.org/10.1111/1755-0998.12725 (2018).

  • 40.

    Fallet, P. et al. A Rwandan survey of entomopathogenic nematodes that can potentially be used to control the fall armyworm. IOBC Bulletin (in press).

  • 41.

    Boppré, M. Insects pharmacophagously utilizing defensive plant chemicals (pyrrolizidine alkaloids). Naturwissenschaften 73, 17–26 (1986).

  • 42.

    Nishida, R. & Fukami, H. Sequestration of distasteful compounds by some pharmacophagous insects. J. Chem. Ecol. 16, 151-164, 0098-0331/90/0100-0151506.00/0 (1990).

  • 43.

    Ferguson, J. E. & Metcalf, R. L. Cucurbitacins: Plant-derived defense compounds for diabroticites (Coleoptera: Chrysomelidae). J. Chem. Ecol. 11, 311–318, https://doi.org/10.1007/BF01411417 (1985).

  • 44.

    Hazir, S., Kaya, H. K., Stock, S. P. & Keskin, N. Entomopathogenic nematodes (Steinernematidae and Heterorhabditidae) for biological control of soil pests. Turk. J. Biol. 27, 181–202 (2004).

    • Google Scholar
  • 45.

    Carper, A. L., Enger, M. & Bowers, M. D. Host plant effects on immune response across development of a specialist caterpillar. Front. Ecol. Evol. 7, 208, https://doi.org/10.3389/fevo.2019.00208 (2019).

    • Article
    • Google Scholar
  • 46.

    Hallem, E. A., Rengarajan, M., Ciche, T. A. & Sternberg, P. W. Nematodes, bacteria, and flies: a tripartite model for nematode parasitism. Curr. Biol. 17, 898–904, https://doi.org/10.1016/j.cub.2007.04.027 (2007).

  • 47.

    Li, X. Y., Cowles, R. S., Cowles, E. A., Gaugler, R. & Cox-Foster, D. L. Relationship between the successful infection by entomopathogenic nematodes and the host immune response. Int. J. Parasitol. 37, 365–374, https://doi.org/10.1016/j.ijpara.2006.08.009 (2007).

  • 48.

    Coley, D. P., Bateman, L. M. & Kursar, T. A. The effects of plant quality on caterpillar growth and defense against natural enemies. Oikos 115, 219–228 (2006).

    • Article
    • Google Scholar
  • 49.

    Geisert, R. W. et al. Comparative assessment of four Steinernematidae and three Heterorhabditidae species for infectivity of larval Diabrotica virgifera virgifera. J. Econ. Entomol. 111, 542–548, https://doi.org/10.1093/jee/tox372 (2018).

  • 50.

    Hiltpold, I., Baroni, M., Toepfer, S., Kuhlmann, U. & Turlings, T. C. J. Selection of entomopathogenic nematodes for enhanced responsiveness to a volatile root signal helps to control a major root pest. J. Exp. Biol. 213, 2417–2423, https://doi.org/10.1242/jeb.041301 (2010).

  • 51.

    Kurtz, B., Hiltpold, I., Turlings, T. C. J., Kuhlmann, U. & Toepfer, S. Comparative susceptibility of larval instars and pupae of the western corn rootworm to infection by three entomopathogenic nematodes. BioControl 54, 255–262, https://doi.org/10.1007/s10526-008-9156-y (2008).

    • Article
    • Google Scholar
  • 52.

    Georgis, R. et al. Successes and failures in the use of parasitic nematodes for pest control. Biol Control 38, 103–123, https://doi.org/10.1016/j.biocontrol.2005.11.005 (2006).

    • Article
    • Google Scholar
  • 53.

    Hiltpold, I., Hibbard, B. E., French, B. W. & Turlings, T. C. J. Capsules containing entomopathogenic nematodes as a Trojan horse approach to control the western corn rootworm. Plant Soil 358, 11–25, https://doi.org/10.1007/s11104-012-1253-0 (2012).

  • 54.

    Kim, J., Hiltpold, I., Hibbard, B. E. & Turlings, T. C. J. Calcium-alginate beads as a formulation for the application of entomopathogenic nematodes to control the Western corn rootworm. (under review).

  • 55.

    Jaffuel, G., Sbaiti, I. & Turlings, T. C. J. Encapsulated entomopathogenic nematodes can protect maize plants from Diabrotica balteata larvae. Insects 11, 27 (2020).

    • Article
    • Google Scholar
  • 56.

    Han, R. & Ehlers, R. U. Pathogenicity, development, and reproduction of Heterorhabditis bacteriophora and Steinernema carpocapsae under axenic in vivo conditions. J. Invertebr. Pathol. 75, 55–58, https://doi.org/10.1006/jipa.1999.4900 (2000).

  • 57.

    Maag, D. et al. Highly localized and persistent induction of Bx1-dependent herbivore resistance factors in maize. Plant J. 88, 976–991, https://doi.org/10.1111/tpj.13308 (2016).

  • 58.

    Erb, M. et al. Synergies and trade-offs between insect and pathogen resistance in maize leaves and roots. Plant Cell Environ. 34, 1088–1103, https://doi.org/10.1111/j.1365-3040.2011.02307.x (2011).

  • 59.

    Bedding, R. A. & Akhurst, R. J. A simple technique for the detection of insect paristic rhabditid nematodes in soil. Nematologica 21, 109–110, https://doi.org/10.1163/187529275X00419 (1975).

    • Article
    • Google Scholar
  • 60.

    Campos-Herrera, R. et al. Unraveling the intraguild competition between Oscheius spp. nematodes and entomopathogenic nematodes: implications for their natural distribution in Swiss agricultural soils. J. Invertebr. Pathol. 132, 216–227, https://doi.org/10.1016/j.jip.2015.10.007 (2015).

  • 61.

    White, G. F. A method for obtaining infective nematode larvae from cultures. Science 66, 302–303, https://doi.org/10.1126/science.66.1709.302-a (1927).

  • 62.

    Vrain, T. C., Wakarchuk, D. A., Lévesque, A. C. & Hamilton, R. I. Intraspecific rDNA restriction fragment length polymorphism in the Xiphinema americanum group. Fund. Appl. Nematol. 15, 563–573 (1992).

    • Google Scholar
  • 63.

    Stock, S. P., Campbell, J. F. & Nadler, S. A. Phylogeny of Steinernema Travassos, 1927 (Cephalobina: Steinernematidae) inferred from ribosomal DNA sequences and morphological characters. J. Parasitol. 87, 877–889, https://doi.org/10.1645/0022-3395(2001)087[0877:POSTCS]2.0.CO;2 (2001).

  • 64.

    Saitou, N. & Nei, M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425, https://doi.org/10.1093/oxfordjournals.molbev.a040454 (1987).

  • 65.

    Murshudov, G. N., Vagin, A. A. & Dodson, E. J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr 53, 240–255, https://doi.org/10.1107/S0907444996012255 (1997).

  • 66.

    Nei, M. & Kumar, S. Molecular evolution and phylogenetics. (Oxford university press, 2000).

  • 67.

    Kumar, S., Stecher, G. & Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 33, 1870–1874, https://doi.org/10.1093/molbev/msw054 (2016).

  • 68.

    Hasegawa, M., Kishino, H. & Yano, T. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 22, 160–174, https://doi.org/10.1007/bf02101694 (1985).

  • 69.

    Kimura, M. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111–120 (1980). 0022–2844/80/0016/0111/~ 02.00.

  • 70.

    Felsenstein, J. Confidence Limits on Phylogenies: An Approach Using the Bootstrap. Evolution 39, 783–791, https://doi.org/10.1111/j.1558-5646.1985.tb00420.x (1985).

    • Article
    • Google Scholar
  • 71.

    Chevenet, F., Brun, C., Banuls, A. L., Jacq, B. & Christen, R. TreeDyn: towards dynamic graphics and annotations for analyses of trees. BMC Bioinformatics 7, 439, https://doi.org/10.1186/1471-2105-7-439 (2006).

  • 72.

    Letunic, I. & Bork, P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 44, W242–245, https://doi.org/10.1093/nar/gkw290 (2016).

  • 73.

    Cambier, V., Hance, T. & de Hoffmann, E. Variation of DIMBOA and related compounds content in relation to the age and plant organ in maize. Phytochemistry 53, 223–229, https://doi.org/10.1016/s0031-9422(99)00498-7 (2000).

  • 74.

    Glauser, G. et al. Induction and detoxification of maize 1,4-benzoxazin-3-ones by insect herbivores. Plant J. 68, 901–911, https://doi.org/10.1111/j.1365-313X.2011.04740.x (2011).

  • 75.

    Oikawa, A., Ishihara, A. & Iwamura, H. Induction of HDMBOA-Glc accumulation and DIMBOA-Glc 4-O-methyltransferase by jasmonic acid in poaceous plants. Phytochemistry 61, 331–337, https://doi.org/10.1016/s0031-9422(02)00225-x (2002).


  • Source: Ecology - nature.com

    Q&A: Energy studies at MIT and the next generation of energy leaders

    Effects of climate and land-use changes on fish catches across lakes at a global scale