in

Environmental DNA survey captures patterns of fish and invertebrate diversity across a tropical seascape

  • 1.

    Costanza, R. et al. Changes in the global value of ecosystem services. Glob. Environ. Chang. 26, 152–158 (2014).

    • Article
    • Google Scholar
  • 2.

    Ryther, J. H. Photosynthesis and Fish Production in the Sea. Science (80-.). 166, 72–76 (1969).

  • 3.

    Millenium Ecosystem Assessment. Ecosystems and Human Well-being: Current State and Trends, Volume 1. Millennium Ecosystem Assessment Series (2005).

  • 4.

    Gray, J. S. Marine biodiversity: patterns, threats and conservation needs. Biodivers. Conserv. 6, 153–175 (1997).

    • Article
    • Google Scholar
  • 5.

    Spalding, M. D., Ravilious, C. & Green, E. P. World Atlas of Coral Reefs. (University of California Press, 2001).

  • 6.

    Worm, B. & Lenihan, H. S. Threats to Marine Ecosystems. In Marine Community Ecology and Conservation (eds. Bertness, M. D., Bruno, J. F., Silliman, B. R. & Stachowicz, J. J.) 449–476 (Sinauer Associates Inc., 2014).

  • 7.

    Lotze, H. K. et al. Depletion degradation, and recovery potential of estuaries and coastal seas. Science (80-.). 312, 1806–1809 (2006).

  • 8.

    Butchart, S. H. M. et al. Global Biodiversity: Indicators of Recent Declines. Science (80-.). 328, 1164–1168 (2010).

  • 9.

    Stachowicz, J. J., Bruno, J. F. & Duffy, J. E. Understanding the Effects of Marine Biodiversity on Communities and Ecosystems. Annu. Rev. Ecol. Evol. Syst. 38, 739–766 (2007).

    • Article
    • Google Scholar
  • 10.

    Worm, B. et al. Impacts of Biodiversity Loss on Ocean Ecosystem Services. Science (80-.). 314, 787–790 (2006).

  • 11.

    Duffy, J. E. Reefs need richness. Nat. Ecol. Evol. 3, 149–150 (2019).

  • 12.

    Topor, Z. M., Rasher, D. B., Duffy, J. E. & Brandl, S. J. Marine protected areas enhance coral reef functioning by promoting fish biodiversity. Conserv. Lett. 12, e12638 (2019).

    • Article
    • Google Scholar
  • 13.

    Miloslavich, P. et al. Marine Biodiversity in the Caribbean: Regional Estimates and Distribution Patterns. PLoS One 5, e11916 (2010).

  • 14.

    Ackerman, J. & Bellwood, D. Reef fish assemblages: a re-evaluation using enclosed rotenone stations. Mar. Ecol. Prog. Ser. 206, 227–237 (2000).

  • 15.

    Ficetola, G. F., Miaud, C., Pompanon, F. & Taberlet, P. Species detection using environmental DNA from water samples. Biol. Lett. 4, 423–425 (2008).

  • 16.

    Thomsen, P. F. et al. Detection of a Diverse Marine Fish Fauna Using Environmental DNA from Seawater Samples. PLoS One 7, e41732 (2012).

  • 17.

    Thompson, A. & Mapstone, B. Observer effects and training in underwater visual surveys of reef fishes. Mar. Ecol. Prog. Ser. 154, 53–63 (1997).

  • 18.

    Ackerman, J. L. & Bellwood, D. R. The contribution of small individuals to density-body size relationships. Oecologia 136, 137–140 (2003).

  • 19.

    Jørgensen, L. L., Renaud, P. E. & Cochrane, S. K. J. Improving benthic monitoring by combining trawl and grab surveys. Mar. Pollut. Bull. 62, 1183–1190 (2011).

  • 20.

    Boussarie, G., Teichert, N., Lagarde, R. & Ponton, D. BichiCAM, an Underwater Automated Video Tracking System for the Study of Migratory Dynamics of Benthic Diadromous Species in Streams. River Res. Appl. 32, 1392–1401 (2016).

    • Article
    • Google Scholar
  • 21.

    Foote, A. D. et al. Investigating the Potential Use of Environmental DNA (eDNA) for Genetic Monitoring of Marine Mammals. PLoS One 7, e41781 (2012).

  • 22.

    Port, J. A. et al. Assessing vertebrate biodiversity in a kelp forest ecosystem using environmental DNA. Mol. Ecol. 25, 527–541 (2016).

  • 23.

    Andruszkiewicz, E. A. et al. Biomonitoring of marine vertebrates in Monterey Bay using eDNA metabarcoding. PLoS One 12, e0176343 (2017).

  • 24.

    DiBattista, J. D. et al. Assessing the utility of eDNA as a tool to survey reef-fish communities in the Red Sea. Coral Reefs 36, 1245–1252 (2017).

  • 25.

    Nichols, P. K. & Marko, P. B. Rapid assessment of coral cover from environmental DNA in Hawai’i. Environ. DNA 1, 40–53 (2019).

    • Google Scholar
  • 26.

    Deiner, K. et al. Environmental DNA metabarcoding: Transforming how we survey animal and plant communities. Mol. Ecol. 26, 5872–5895 (2017).

  • 27.

    Barnes, M. A. & Turner, C. R. The ecology of environmental DNA and implications for conservation genetics. Conserv. Genet. 17, 1–17 (2016).

  • 28.

    O’Donnell, J. L. et al. Spatial distribution of environmental DNA in a nearshore marine habitat. PeerJ 5, e3044 (2017).

  • 29.

    Stat, M. et al. Ecosystem biomonitoring with eDNA: Metabarcoding across the tree of life in a tropical marine environment. Sci. Rep. 7, 1–11 (2017).

  • 30.

    Bakker, J. et al. Biodiversity assessment of tropical shelf eukaryotic communities via pelagic eDNA metabarcoding. Ecol. Evol. 9, 14341–14355 (2019).

  • 31.

    Jørgensen, P. S., Folke, C. & Carroll, S. P. Evolution in the Anthropocene: Informing Governance and Policy. Annu. Rev. Ecol. Evol. Syst. 50, annurev-ecolsys-110218-024621 (2019).

  • 32.

    Edgar, G. J. & Stuart-Smith, R. D. Systematic global assessment of reef fish communities by the Reef Life Survey program. Sci. Data 1, 140007 (2014).

  • 33.

    Nagelkerken, I. et al. Importance of Mangroves, Seagrass Beds and the Shallow Coral Reef as a Nursery for Important Coral Reef Fishes, Using a Visual Census Technique. Estuar. Coast. Shelf Sci. 51, 31–44 (2000).

  • 34.

    Nagelkerken, I. et al. How important are mangroves and seagrass beds for coral-reef fish? The nursery hypothesis tested on an island scale. Mar. Ecol. Prog. Ser. 244, 299–305 (2002).

  • 35.

    Lefcheck, J. S. et al. Are coastal habitats important nurseries? A meta‐analysis. Conserv. Lett. e12645 https://doi.org/10.1111/conl.12645 (2019).

  • 36.

    Unsworth, R. K. F., Nordlund, L. M. & Cullen-Unsworth, L. C. Seagrass meadows support global fisheries production. Conserv. Lett. 12, e12566 (2019).

    • Article
    • Google Scholar
  • 37.

    Gillis, L. G. Connectivity beyond biodiversity: are physical fluxes important in the tropical coastal seascape? (Radboud University, 2014).

  • 38.

    Collin, R. Ecological monitoring and biodiversity surveys at the Smithsonian Tropical Research Institute’s Bocas del Toro Research Station. Caribb. J. Sci. 41, 367–373 (2005).

    • Google Scholar
  • 39.

    Guzmán, H. M., Barnes, P. A. G., Lovelock, C. E. & Feller, I. C. A site description of the CARICOMP mangrove, seagrass and coral reef sites in Bocas del Toro, Panama. Caribb. J. Sci. 41, 430–440 (2005).

    • Google Scholar
  • 40.

    Dominici-Arosemena, A. & Wolff, M. Reef fish community structure in Bocas del Toro (Caribbean, Panama): Gradients in habitat complexity and exposure. Caribb. J. Sci. 41, 613–637 (2005).

    • Google Scholar
  • 41.

    De Grave, S. & Anker, A. An annotated checklist of marine caridean and stenopodidean shrimps (Malacostraca: Decapoda) of the Caribbean coast of Panama. Nauplius 25, (2017).

  • 42.

    Paulay, G. et al. Cryptobenthic invertebrates of Bocas del Toro, Panama: field guide 1.0. https://doi.org/10.6084/m9.figshare.5183722.v1 (2017).

  • 43.

    Guzman, H. M. Caribbean coral reefs of Panama: present status and future perspectives. In Latin American coral reefs 241–274 (Elsevier, 2003).

  • 44.

    Cramer, K. L. et al. Anthropogenic mortality on coral reefs in Caribbean Panama predates coral disease and bleaching. Ecol. Lett. 15, 561–567 (2012).

  • 45.

    Seemann, J. et al. Assessing the ecological effects of human impacts on coral reefs in Bocas del Toro, Panama. Environ. Monit. Assess. 186, 1747–1763 (2014).

  • 46.

    Nelson, H. R., Kuempel, C. D. & Altieri, A. H. The resilience of reef invertebrate biodiversity to coral mortality. Ecosphere 7, (2016).

  • 47.

    Altieri, A. H. et al. Tropical dead zones and mass mortalities on coral reefs. Proc. Natl. Acad. Sci. 114, 3660–3665 (2017).

  • 48.

    Laramie, M. B., Pilliod, D. S., Goldberg, C. S. & Strickler, K. M. Environmental DNA sampling protocol – filtering water to capture DNA from aquatic organisms. In U.S Geological Survey Techniques and Methods Book 2, 15 p. (2015).

  • 49.

    Leray, M. et al. A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metazoan diversity: Application for characterizing coral reef fish gut contents. Front. Zool. 10, 1–14 (2013).

  • 50.

    Leray, M., Haenel, Q. & Bourlat, S. J. Preparation of Amplicon Libraries for Metabarcoding of Marine Eukaryotes Using Illumina MiSeq: The Adapter Ligation Method. In Methods in Molecular Biology 1452, 209–218 (Humana Press Inc., 2016).

  • 51.

    Roehr, J. T., Dieterich, C. & Reinert, K. Flexbar 3.0 – SIMD and multicore parallelization. Bioinformatics 33, 2941–2942 (2017).

  • 52.

    Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).

  • 53.

    Callahan, B. J., McMurdie, P. J. & Holmes, S. P. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 11, 2639–2643 (2017).

  • 54.

    Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: a versatile open source tool for metagenomics. PeerJ 4, e2584 (2016).

  • 55.

    Frøslev, T. G. et al. Algorithm for post-clustering curation of DNA amplicon data yields reliable biodiversity estimates. Nat. Commun. 8, (2017).

  • 56.

    Gao, X., Lin, H., Revanna, K. & Dong, Q. A Bayesian taxonomic classification method for 16S rRNA gene sequences with improved species-level accuracy. BMC Bioinformatics 18, 1–10 (2017).

    • Google Scholar
  • 57.

    Machida, R. J., Leray, M., Ho, S. L. & Knowlton, N. Data Descriptor: Metazoan mitochondrial gene sequence reference datasets for taxonomic assignment of environmental samples. Sci. Data 4, 1–7 (2017).

  • 58.

    Humann, P. & DeLoach, N. Reef fish identification: Florida, Caribbean, Bahamas. (New World Publications, 2014).

  • 59.

    Froese, R. & Pauly, D. FishBase.

  • 60.

    Robertson, D. R. & Van Tassel, J. Shorefishes of the Greater Caribbean: online information system. Version 2. (2016).

  • 61.

    R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2019).

  • 62.

    McMurdie, P. J. & Holmes, S. phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLoS One 8, e61217 (2013).

  • 63.

    Oksanen, J. et al. vegan: Community Ecology Package. (2018).

  • 64.

    Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

  • 65.

    Aiello, S., Eckstrand, E., Fu, A., Landry, M. & Aboyoun, P. Fast Scalable R with H2O. (2015).

  • 66.

    Plotly Technologies Inc. Collaborative data science. (2015).

  • 67.

    Wickham, H. ggplot2: Elegant Graphics for Data Analysis. (Springer-Verlag New York, 2009).

  • 68.

    Anderson, M. J. Permutational Multivariate Analysis of Variance (PERMANOVA). In Wiley StatsRef: Statistics Reference Online 1–15 (John Wiley & Sons, Ltd, https://doi.org/10.1002/9781118445112.stat07841 2017).

  • 69.

    Sigsgaard, E. E. et al. Using vertebrate environmental DNA from seawater in biomonitoring of marine habitats. Conserv. Biol. cobi.13437 https://doi.org/10.1111/cobi.13437 (2019).

  • 70.

    Woodley, J. D. et al. Hurricane Allen’s Impact on Jamaican Coral Reefs. Science 214, 749–755 (1981).

  • 71.

    Guzmán, H. M. & Guevara, C. A. Arrecifes coralinos de Bocas del Toro, Panamá: distribución, estructura y estado de conservación de los arrecifes continentales de la Laguna de Chiriquí y la Bahía Almirante. Revista de Biología Tropical 46, 601–623 (1998).

    • Google Scholar
  • 72.

    Guzmán, H. M. & Guevara, C. A. Arrecifes coralinos de Bocas del Toro, Panamá: II. Distribución, estructura y estado de conservación de los arrecifes de las Islas Bastimentos, Solarte, Carenero y Colón. Revista de Biología Tropical 46, 889–912 (1998).

    • Google Scholar
  • 73.

    Guzmán, H. M. & Guevara, C. A. Arrecifes coralinos de Bocas del Toro, Panamá: III. Distribución, estructura, diversidad y estado de conservación de los arrecifes de las islas Pastores, Cristóbal, Popa y Cayo Agua. Revista de Biología Tropical 47, 659–676 (1999).

    • Google Scholar
  • 74.

    Coissac, E., Hollingsworth, P. M., Lavergne, S. & Taberlet, P. From barcodes to genomes: Extending the concept of DNA barcoding. Mol. Ecol. 25, 1423–1428 (2016).

  • 75.

    Ratnasingham, S. & Hebert, P. D. N. BOLD: The Barcode of Life Data System: Barcoding. Mol. Ecol. Notes 7, 355–364 (2007).

  • 76.

    Hinchliff, C. E. et al. Synthesis of phylogeny and taxonomy into a comprehensive tree of life. Proc. Natl. Acad. Sci. USA 112, 12764–12769 (2015).

  • 77.

    Leray, M. & Knowlton, N. DNA barcoding and metabarcoding of standardized samples reveal patterns of marine benthic diversity. Proc. Natl. Acad. Sci. 2014, 201424997 (2015).

    • Google Scholar
  • 78.

    Pearman, J. K. et al. Cross-shelf investigation of coral reef cryptic benthic organisms reveals diversity patterns of the hidden majority. Sci. Rep. 8, (2018).

  • 79.

    Collins, R. A. et al. Non‐specific amplification compromises environmental DNA metabarcoding with COI. Methods Ecol. Evol. 2041–210X.13276 https://doi.org/10.1111/2041-210X.13276 (2019).

  • 80.

    Huang, D., Meier, R., Todd, P. A. & Chou, L. M. Slow mitochondrial COI sequence evolution at the base of the metazoan tree and its implications for DNA barcoding. J. Mol. Evol. 66, 167–174 (2008).

  • 81.

    Leray, M. & Knowlton, N. Censusing marine eukaryotic diversity in the twenty-first century. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 371, 20150331 (2016).

  • 82.

    Sales, N. G., Wangensteen, O. S., Carvalho, D. C. & Mariani, S. Influence of preservation methods, sample medium and sampling time on eDNA recovery in a neotropical river. Environ. DNA 1, 119–130 (2019).

    • Article
    • Google Scholar

  • Source: Ecology - nature.com

    Accounting for detection unveils the intricacy of wild boar and rabbit co-occurrence patterns in a Mediterranean landscape

    Impacts of Saharan Dust Intrusions on Bacterial Communities of the Low Troposphere