in

Environmental factors influencing primary productivity of the forest-forming kelp Laminaria hyperborea in the northeast Atlantic

  • 1.

    Lieth, H. & Whittaker, R. H. Primary Productivity of the Biosphere (Springer, New York, 1975).

    Google Scholar 

  • 2.

    Heimann, M. & Reichstein, M. Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature 451, 289–292. https://doi.org/10.1038/nature06591 (2008).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 3.

    Duarte, C. M., Losada, I. J., Hendriks, I. E., Mazarrasa, I. & Marba, N. The role of coastal plant communities for climate change mitigation and adaptation. Nat. Clim. Change 3, 961–968. https://doi.org/10.1038/nclimate1970 (2013).

    ADS  CAS  Article  Google Scholar 

  • 4.

    Duarte, C. M. Reviews and syntheses: hidden forests, the role of vegetated coastal habitats in the ocean carbon budget. Biogeosciences 14, 301–310. https://doi.org/10.5194/bg-14-301-2017 (2017).

    ADS  CAS  Article  Google Scholar 

  • 5.

    Field, C. B., Behrenfeld, M. J., Randerson, J. T. & Falkowski, P. Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281, 237–240. https://doi.org/10.1126/science.281.5374.237 (1998).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 6.

    Charpy-Roubaud, C. & Sournia, A. The comparative estimation of phytoplanktonic, microphytobenthic and macrophytobenthic primary production in the oceans. Mar. Microb. Food Webs 4, 31–57 (1990).

    Google Scholar 

  • 7.

    Duarte, C. M. & Cebrián, J. The fate of marine autotrophic production. Limnol. Oceanogr. 41, 1758–1766. https://doi.org/10.4319/lo.1996.41.8.1758 (1996).

    ADS  CAS  Article  Google Scholar 

  • 8.

    Macreadie, P. I. et al. The future of Blue Carbon science. Nat. Commun. 10, 3998. https://doi.org/10.1038/s41467-019-11693-w (2019).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 9.

    Krause-Jensen, D. & Duarte, C. M. Substantial role of macroalgae in marine carbon sequestration. Nat. Geosci. 9, 737–742. https://doi.org/10.1038/ngeo2790 (2016).

    ADS  CAS  Article  Google Scholar 

  • 10.

    Mann, K. H. Seaweeds: their productivity and strategy for growth. Science 182, 975–981 (1973).

    ADS  CAS  Article  Google Scholar 

  • 11.

    Renaud, P. E., Løkken, T. S., Jørgensen, L. L., Berge, J. & Johnson, B. J. Macroalgal detritus and food-web subsidies along an Arctic fjord depth-gradient. Front. Mar. Sci. 2, 1–7. https://doi.org/10.3389/fmars.2015.00031 (2015).

    Article  Google Scholar 

  • 12.

    Vanderklift, M. A. & Wernberg, T. Detached kelps from distant sources are a food subsidy for sea urchins. Oecologia 157, 327–335 (2008).

    ADS  Article  Google Scholar 

  • 13.

    Queirós, A. M. et al. Connected macroalgal-sediment systems: blue carbon and food webs in the deep coastal ocean. Ecol. Monogr. 89, e01366. https://doi.org/10.1002/ecm.1366 (2019).

    Article  Google Scholar 

  • 14.

    Ortega, A. et al. Metagenomes reveal prevalence of exported macroalgae across the global ocean. Nat. Geosci. (in press).

  • 15.

    Smale, D. A., Burrows, M. T., Moore, P. J., O’ Connor, N. & Hawkins, S. J. Threats and knowledge gaps for ecosystem services provided by kelp forests: a northeast Atlantic perspective. Ecol. Evol. 3, 4016–4403 (2013).

    Article  Google Scholar 

  • 16.

    Assis, J., Lucas, A. V., Bárbara, I. & Serrão, E. Á. Future climate change is predicted to shift long-term persistence zones in the cold-temperate kelp Laminaria hyperborea. Mar. Environ. Res. 113, 174–182. https://doi.org/10.1016/j.marenvres.2015.11.005 (2016).

    CAS  Article  PubMed  Google Scholar 

  • 17.

    Smale, D. A., Wernberg, T., Yunnie, A. L. E. & Vance, T. The rise of Laminaria ochroleuca in the Western English Channel (UK) and preliminary comparisons with its competitor and assemblage dominant Laminaria hyperborea. Mar. Ecol. 36, 1033–1044 (2015).

    ADS  Article  Google Scholar 

  • 18.

    Smale, D. A. & Moore, P. J. Variability in kelp forest structure along a latitudinal gradient in ocean temperature. J. Exp. Mar. Biol. Ecol. 486, 255–264. https://doi.org/10.1016/j.jembe.2016.10.023 (2017).

    Article  Google Scholar 

  • 19.

    Bekkby, T., Rinde, E., Erikstad, L. & Bakkestuen, V. Spatial predictive distribution modelling of the kelp species Laminaria hyperborea. ICES J. Mar. Sci. 66, 2106–2115. https://doi.org/10.1093/icesjms/fsp195 (2009).

    Article  Google Scholar 

  • 20.

    Teagle, H., Moore, P. J., Jenkins, H. & Smale, D. A. Spatial variability in the diversity and structure of faunal assemblages associated with kelp holdfasts (Laminaria hyperborea) in the northeast Atlantic. PLoS ONE 13, e0200411. https://doi.org/10.1371/journal.pone.0200411 (2018).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 21.

    Pessarrodona, A., Moore, P. J., Sayer, M. D. J. & Smale, D. A. Carbon assimilation and transfer through kelp forests in the NE Atlantic is diminished under a warmer ocean climate. Glob. Change Biol. 24, 4386–4398. https://doi.org/10.1111/gcb.14303 (2018).

    ADS  Article  Google Scholar 

  • 22.

    Smale, D. A. et al. Linking environmental variables with regional-scale variability in ecological structure and standing stock of carbon within kelp forests in the United Kingdom. Mar. Ecol. Prog. Ser. 542, 79–95 (2016).

    ADS  CAS  Article  Google Scholar 

  • 23.

    Kain, J. M. A view of the genus Laminaria. Oceanogr. Mar. Biol. Annu. Rev. 17, 101–161 (1979).

    Google Scholar 

  • 24.

    Jupp, B. P. & Drew, E. A. Studies on the growth of Laminaria hyperborea (Gunn.) Fosl. I .Biomass and productivity. J. Exp. Mar. Biol. Ecol. 15, 185–196. https://doi.org/10.1016/0022-0981(74)90044-6 (1974).

    Article  Google Scholar 

  • 25.

    Sheppard, C. R. C., Jupp, B. P., Sheppard, A. L. S. & Bellamy, D. J. Studies on the growth of Laminaria hyperborea (Gunn.) Fosl. and Laminaria ochroleuca De La Pylaie on the French Channel Coast. Bot. Mar. 11, 109–116 (1978).

    Google Scholar 

  • 26.

    Pessarrodona, A., Foggo, A. & Smale, D. A. Can ecosystem functioning be maintained despite climate-driven shifts in species composition? Insights from novel marine forests. J. Ecol. 107, 91–104 (2019).

    Article  Google Scholar 

  • 27.

    Kain, J. M. The biology of Laminaria hyperborea. X The effect of depth on some populations. J. Mar. Biol. Assoc. UK 57, 587–607 (1977).

    Article  Google Scholar 

  • 28.

    Reed, D. C., Rassweiler, A. & Arkema, K. K. Biomass rather than growth rate determines variation in net primary production by giant kelp. Ecology 89, 2493–2505. https://doi.org/10.2307/27650788 (2008).

    Article  PubMed  Google Scholar 

  • 29.

    Bearham, D., Vanderklift, M. A. & Gunson, J. R. Temperature and light explain spatial variation in growth and productivity of the kelp Ecklonia radiata. Mar. Ecol. Prog. Ser. 476, 59–70. https://doi.org/10.3354/meps10148 (2013).

    ADS  Article  Google Scholar 

  • 30.

    Boden, G. T. The effect of depth on summer growth of Laminaria saccharina (Phaeophyta, Laminariales). Phycologia 18, 405–408. https://doi.org/10.2216/i0031-8884-18-4-405.1 (1979).

    Article  Google Scholar 

  • 31.

    Bonsell, C. & Dunton, K. H. Long-term patterns of benthic irradiance and kelp production in the central Beaufort sea reveal implications of warming for Arctic inner shelves. Prog. Oceanogr. 162, 160–170. https://doi.org/10.1016/j.pocean.2018.02.016 (2018).

    ADS  Article  Google Scholar 

  • 32.

    Long, M. H., Rheuban, J. E., Berg, P. & Zieman, J. C. A comparison and correction of light intensity loggers to photosynthetically active radiation sensors. Limnol. Oceanog.: Methods 10, 416–424. https://doi.org/10.4319/lom.2012.10.416 (2012).

    Article  Google Scholar 

  • 33.

    Devlin, M. J. et al. Relationships between suspended particulate material, light attenuation and Secchi depth in UK marine waters. Estuar. Coast. Shelf Sci. 79, 429–439. https://doi.org/10.1016/j.ecss.2008.04.024 (2008).

    ADS  Article  Google Scholar 

  • 34.

    Kratzer, S., Buchan, S. & Bowers, D. G. Testing long-term trends in turbidity in the Menai Strait, North Wales. Estuar. Coast. Shelf Sci. 56, 221–226. https://doi.org/10.1016/S0272-7714(02)00159-2 (2003).

    ADS  CAS  Article  Google Scholar 

  • 35.

    Foden, J., Sivyer, D. B., Mills, D. K. & Devlin, M. J. Spatial and temporal distribution of chromophoric dissolved organic matter (CDOM) fluorescence and its contribution to light attenuation in UK waterbodies. Estuar. Coast. Shelf Sci. 79, 707–717. https://doi.org/10.1016/j.ecss.2008.06.015 (2008).

    ADS  Article  Google Scholar 

  • 36.

    White, M., Gaffney, S., Bowers, D. G. & Bowyer, P. Interannual variability in irish sea turbidity and relation to wind strength. Biol. Environ.: Proc. R. Irish Acad. 103B, 83–90 (2003).

    Google Scholar 

  • 37.

    Lüning, K. Critical levels of light and temperature regulating the gametogenesis of three Laminaria species (Phaeophyceae). J. Phycol. 16, 1–15. https://doi.org/10.1111/j.1529-8817.1980.tb02992.x (1980).

    Article  Google Scholar 

  • 38.

    Lüning, K. Temperature tolerance and biogeography of seaweeds: The marine algal flora of Helgoland (North Sea) as an example. Helgoländer Meeresun 38, 305–317. https://doi.org/10.1007/bf01997486 (1984).

    Article  Google Scholar 

  • 39.

    Bolton, J. J. & Lüning, K. Optimal growth and maximal survival temperatures of Atlantic Laminaria species (Phaeophyta) in culture. Mar. Biol. 66, 89–94. https://doi.org/10.1007/bf00397259 (1982).

    Article  Google Scholar 

  • 40.

    King, N. G., McKeown, N. J., Smale, D. A. & Moore, P. J. The importance of phenotypic plasticity and local adaptation in driving intraspecific variability in thermal niches of marine macrophytes. Ecography 41, 1469–1484. https://doi.org/10.1111/ecog.03186 (2018).

    Article  Google Scholar 

  • 41.

    Stevens, C. L. & Hurd, C. L. Boundary-layers around bladed aquatic macrophytes. Hydrobiologia 346, 119–128. https://doi.org/10.1023/a:1002914015683 (1997).

    Article  Google Scholar 

  • 42.

    Pedersen, M. F., Nejrup, L. B., Fredriksen, S., Christie, H. & Norderhaug, K. M. Effects of wave exposure on population structure, demography, biomass and productivity of the kelp Laminaria hyperborea. Mar. Ecol. Prog. Ser. 451, 45–60. https://doi.org/10.3354/meps09594 (2012).

    ADS  Article  Google Scholar 

  • 43.

    Graham, M. H. Factors determining the upper limit of giant kelp, Macrocystis pyrifera Agardh, along the Monterey Peninsula, central California, USA. J. Exp. Mar. Biol. Ecol. 218, 127–149. https://doi.org/10.1016/S0022-0981(97)00072-5 (1997).

    Article  Google Scholar 

  • 44.

    Zimmerman, R. C. & Robertson, D. L. Effects of El Niño on local hydrography and growth of the giant kelp, Macrocystis pyrifera, at Santa Catalina Island, California1. Limnol. Oceanogr. 30, 1298–1302. https://doi.org/10.4319/lo.1985.30.6.1298 (1985).

    ADS  Article  Google Scholar 

  • 45.

    Dean, T. A. & Jacobsen, F. R. Nutrient-limited growth of juvenile kelp, Macrocystis pyrifera, during the 1982–1984 “El Niño” in southern California. Mar. Biol. 90, 597–601. https://doi.org/10.1007/bf00409280 (1986).

    Article  Google Scholar 

  • 46.

    Krumhansl, K. A., Lauzon-Guay, J.-S. & Scheibling, R. E. Modeling effects of climate change and phase shifts on detrital production of a kelp bed. Ecology https://doi.org/10.1890/13-0228.1 (2013).

    Article  Google Scholar 

  • 47.

    Wilmers, C. C., Estes, J. A., Edwards, M., Laidre, K. L. & Konar, B. Do trophic cascades affect the storage and flux of atmospheric carbon? An analysis of sea otters and kelp forests. Front. Ecol. Environ. 10, 409–415. https://doi.org/10.1890/110176 (2012).

    Article  Google Scholar 

  • 48.

    Smyth, T. J. et al. A broad spatio-temporal view of the Western English Channel observatory. J. Plankton Res. 32, 585–601. https://doi.org/10.1093/plankt/fbp128 (2010).

    ADS  Article  Google Scholar 

  • 49.

    Leclerc, J. C. et al. Trophic significance of kelps in kelp communities in Brittany (France) inferred from isotopic comparisons. Mar. Biol. 160, 3249–3258. https://doi.org/10.1007/s00227-013-2306-5 (2013).

    Article  Google Scholar 

  • 50.

    Norderhaug, K. M. & Christie, H. C. Sea urchin grazing and kelp re-vegetation in the NE Atlantic. Mar. Biol. Res. 5, 515–528. https://doi.org/10.1080/17451000902932985 (2009).

    Article  Google Scholar 

  • 51.

    Hagen, N. T. Destructive grazing of kelp beds by sea urchins in Vestfjorden, northern Norway. Sarsia 68, 177–190. https://doi.org/10.1080/00364827.1983.10420570 (1983).

    Article  Google Scholar 

  • 52.

    Stephens, R. E. Studies on the development of the sea urchin Strongylocentrotus droebachiensus. I. Ecology and normal development. Biol. Bull. 142, 132–144. https://doi.org/10.2307/1540251 (1972).

    CAS  Article  PubMed  Google Scholar 

  • 53.

    Edwards, M. S. & Connell, S. D. Competition, a major factor structuring seaweed communities. In Seaweed Biology: Novel Insights into Ecophysiology, Ecology and Utilization (eds Wiencke, C. & Bischof, K.) 135–156 (Springer, Berlin, 2012).

    Google Scholar 

  • 54.

    Sjøtun, K. & Fredriksen, S. Growth allocation in Laminaria hyperborea (Laminariales, Phaeophyceae) in relation to age and wave exposure. Mar. Ecol. Prog. Ser. 126, 213–222 (1995).

    ADS  Article  Google Scholar 

  • 55.

    Krumhansl, K. & Scheibling, R. E. Production and fate of kelp detritus. Mar. Ecol. Prog. Ser. 467, 281–302 (2012).

    ADS  Article  Google Scholar 

  • 56.

    Pedersen, M. F., Nejrup, L. B., Pedersen, T. M. & Fredriksen, S. Sub-canopy light conditions only allow low annual net productivity of epiphytic algae on kelp Laminaria hyperborea. Mar. Ecol. Prog. Ser. 516, 163–176 (2014).

    ADS  Article  Google Scholar 

  • 57.

    Abdullah, M. I. & Fredriksen, S. Production, respiration and exudation of dissolved organic matter by the kelp Laminaria hyperborea along the west coast of Norway. J. Mar. Biol. Assoc. UK 84, 887–894. https://doi.org/10.1017/S002531540401015Xh (2004).

    Article  Google Scholar 

  • 58.

    de Bettignies, T., Wernberg, T., Lavery, P. S., Vanderklift, M. A. & Mohring, M. B. Contrasting mechanisms of dislodgement and erosion contribute to production of kelp detritus. Limnol. Oceanogr. 58, 1680–1688 (2013).

    ADS  Article  Google Scholar 

  • 59.

    Smale, D. A., Moore, P. J., Queirós, A. M., Higgs, N. D. & Burrows, M. T. Appreciating interconnectivity between habitats is key to blue carbon management. Front. Ecol. Environ. 16, 71–73. https://doi.org/10.1002/fee.1765 (2018).

    Article  Google Scholar 

  • 60.

    Bustamante, R. H. & Branch, G. M. The dependence of intertidal consumers on kelp-derived organic matter on the west coast of South Africa. J. Exp. Mar. Biol. Ecol. 196, 1–28. https://doi.org/10.1016/0022-0981(95)00093-3 (1996).

    Article  Google Scholar 

  • 61.

    Miller, R. J., Reed, D. C. & Brzezinski, M. A. Partitioning of primary production among giant kelp (Macrocystis pyrifera), understory macroalgae, and phytoplankton on a temperate reef. Limnol. Oceanogr. 56, 119–132. https://doi.org/10.4319/lo.2011.56.1.0119 (2011).

    ADS  Article  Google Scholar 

  • 62.

    Burrows, M. T., Harvey, R. & Robb, L. Wave exposure indices from digital coastlines and the prediction of rocky shore community structure. Mar. Ecol. Prog. Ser. 353, 1–12 (2008).

    ADS  Article  Google Scholar 

  • 63.

    Steen, H., Moy, F. E., Bodvin, T. & Husa, V. Regrowth after kelp harvesting in Nord-Trøndelag, Norway. ICES J. Mar. Sci. 73, 2708–2720. https://doi.org/10.1093/icesjms/fsw130 (2016).

    Article  Google Scholar 

  • 64.

    Krumhansl, K. & Scheibling, R. E. Detrital production in Nova Scotian kelp beds: patterns and processes. Mar. Ecol. Prog. Ser. 421, 67–82 (2011).

    ADS  Article  Google Scholar 

  • 65.

    Fairhead, V. A. & Cheshire, A. C. Rates of primary productivity and growth in Ecklonia radiata measured at different depths, over an annual cycle, at West Island, South Australia. Mar. Biol. 145, 41–50 (2004).

    Google Scholar 

  • 66.

    Mann, K. H. & Kirkman, H. A biomass method for measuring productivity of Ecklonia radiata with the potental for adaptation to other large brown algae. Austral. J. Mar. Freshw. Res. 32, 297–304 (1981).

    Article  Google Scholar 

  • 67.

    Anderson-Teixeira, K. J., Wang, M. M. H., McGarvey, J. C. & LeBauer, D. S. Carbon dynamics of mature and regrowth tropical forests derived from a pantropical database (TropForC-db). Glob. Change Biol. 22, 1690–1709. https://doi.org/10.1111/gcb.13226 (2016).

    ADS  Article  Google Scholar 

  • 68.

    Holl, K. D. & Zahawi, R. A. Factors explaining variability in woody above-ground biomass accumulation in restored tropical forest. For. Ecol. Manag. 319, 36–43. https://doi.org/10.1016/j.foreco.2014.01.024 (2014).

    Article  Google Scholar 

  • 69.

    Dayton, P. K., Tegner, M. J., Parnell, P. E. & Edwards, P. B. Temporal and spatial patterns of disturbance and recovery in a kelp forest community. Ecol. Monogr. 62, 421–445 (1992).

    Article  Google Scholar 

  • 70.

    Christie, H., Fredriksen, S. & Rinde, E. Regrowth of kelp and colonization of epiphyte and fauna community after kelp trawling at the coast of Norway. Hydrobiologia 375–376, 49–58. https://doi.org/10.1023/a:1017021325189 (1998).

    Article  Google Scholar 

  • 71.

    Evans, S. N. & Abdo, D. A. A cost-effective technique for measuring relative water movement for studies of benthic organisms. Mar. Freshw. Res. 61, 1327–1335. https://doi.org/10.1071/MF10007 (2010).

    CAS  Article  Google Scholar 

  • 72.

    Edwards, K. P., Barciela, R. & Butenschön, M. Validation of the NEMO-ERSEM operational ecosystem model for the North West European Continental Shelf. Ocean Sci. 8, 983–1000. https://doi.org/10.5194/os-8-983-2012 (2012).

    ADS  Article  Google Scholar 

  • 73.

    Lüning, K. Standing crop and leaf area index of the sublittoral Laminaria species near Helgoland. Mar. Biol. 3, 282–286. https://doi.org/10.1007/bf00360961 (1969).

    Article  Google Scholar 

  • 74.

    Sjøtun, K., Fredriksen, S., Rueness, J. & Lein, T. Ecological studies of the kelp Laminaria hyperborea (Gunnerus) Foslie in Norway. In Ecology of Fjords and Coastal Waters (eds Skjoldal, H. et al.) 525–536 (Elsevier, Amsterdam, 1995).

    Google Scholar 

  • 75.

    Gunnarsson, K. Population de Laminaria hyperborea et Laminaria digitata dans le Baie de Breidafjördur, Island. J. Mar. Res. Inst. Reykjavik 12, 148 (1991).

    Google Scholar 


  • Source: Ecology - nature.com

    Publisher Correction: Impacts of hydrothermal plume processes on oceanic metal cycles and transport

    Covid-19 shutdown led to increased solar power output