in

Epidemiological hypothesis testing using a phylogeographic and phylodynamic framework

  • 1.

    Lemey, P., Rambaut, A., Welch, J. J. & Suchard, M. A. Phylogeography takes a relaxed random walk in continuous space and time. Mol. Biol. Evol. 27, 1877–1885 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  • 2.

    Pybus, O. G. et al. Unifying the spatial epidemiology and molecular evolution of emerging epidemics. Proc. Natl Acad. Sci. USA 109, 15066–15071 (2012).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 3.

    Baele, G., Dellicour, S., Suchard, M. A., Lemey, P. & Vrancken, B. Recent advances in computational phylodynamics. Curr. Opin. Virol. 31, 24–32 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 4.

    Dellicour, S., Rose, R. & Pybus, O. G. Explaining the geographic spread of emerging epidemics: a framework for comparing viral phylogenies and environmental landscape data. BMC Bioinform. 17, 1–12 (2016).

    Google Scholar 

  • 5.

    Jacquot, M., Nomikou, K., Palmarini, M., Mertens, P. & Biek, R. Bluetongue virus spread in Europe is a consequence of climatic, landscape and vertebrate host factors as revealed by phylogeographic inference. Proc. R. Soc. Lond. B 284, 20170919 (2017).

    Google Scholar 

  • 6.

    Brunker, K. et al. Landscape attributes governing local transmission of an endemic zoonosis: Rabies virus in domestic dogs. Mol. Ecol. 27, 773–788 (2018).

    CAS  PubMed Central  PubMed  Google Scholar 

  • 7.

    Dellicour, S., Vrancken, B., Trovão, N. S., Fargette, D. & Lemey, P. On the importance of negative controls in viral landscape phylogeography. Virus Evol. 4, vey023 (2018).

    PubMed Central  PubMed  Google Scholar 

  • 8.

    Minin, V. N., Bloomquist, E. W. & Suchard, M. A. Smooth skyride through a rough skyline: Bayesian coalescent-based inference of population dynamics. Mol. Biol. Evol. 25, 1459–1471 (2008).

    CAS  PubMed Central  PubMed  Google Scholar 

  • 9.

    Gill, M. S. et al. Improving Bayesian population dynamics inference: A coalescent-based model for multiple loci. Mol. Biol. Evol. 30, 713–724 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 10.

    Gill, M. S., Lemey, P., Bennett, S. N., Biek, R. & Suchard, M. A. Understanding past population dynamics: Bayesian coalescent-based modeling with covariates. Syst. Biol. 65, 1041–1056 (2016).

    PubMed Central  PubMed  Google Scholar 

  • 11.

    Reisen, W. K. Ecology of West Nile virus in North America. Viruses 5, 2079–2105 (2013).

    PubMed Central  PubMed  Google Scholar 

  • 12.

    Hayes, E. B. et al. Epidemiology and transmission dynamics of West Nile virus disease. Emerg. Infect. Dis. 11, 1167–1173 (2005).

    PubMed Central  PubMed  Google Scholar 

  • 13.

    May, F. J., Davis, C. T., Tesh, R. B. & Barrett, A. D. T. Phylogeography of West Nile Virus: from the cradle of evolution in Africa to Eurasia, Australia, and the Americas. J. Virol. 85, 2964–2974 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 14.

    Kramer, L. D. & Bernard, K. A. West Nile virus in the western hemisphere. Curr. Opin. Infect. Dis. 14, 519–525 (2001).

    CAS  PubMed  Google Scholar 

  • 15.

    Kilpatrick, A. M., Kramer, L. D., Jones, M. J., Marra, P. P. & Daszak, P. West Nile virus epidemics in North America are driven by shifts in mosquito feeding behavior. PLoS Biol. 4, 606–610 (2006).

    CAS  Google Scholar 

  • 16.

    Molaei, G., Andreadis, T. G., Armstrong, P. M., Anderson, J. F. & Vossbrinck, C. R. Host feeding patterns of Culex mosquitoes and West Nile virus transmission, northeastern United States. Emerg. Infect. Dis. 12, 468–474 (2006).

    PubMed Central  PubMed  Google Scholar 

  • 17.

    Colpitts, T. M., Conway, M. J., Montgomery, R. R. & Fikrig, E. West Nile virus: biology, transmission, and human infection. Clin. Microbiol. Rev. 25, 635–648 (2012).

    CAS  PubMed Central  PubMed  Google Scholar 

  • 18.

    Bowen, R. A. & Nemeth, N. M. Experimental infections with West Nile virus. Curr. Opin. Infect. Dis. 20, 293–297 (2007).

    PubMed  Google Scholar 

  • 19.

    Petersen, L. R. & Marfin, A. A. West Nile Virus: A primer for the clinician. Ann. Intern. Med. 137, 173–179 (2002).

    PubMed  Google Scholar 

  • 20.

    Petersen, L. R. & Fischer, M. Unpredictable and difficult to control—the adolescence of West Nile virus. N. Engl. J. Med. 367, 1281–1284 (2012).

    CAS  PubMed  Google Scholar 

  • 21.

    Lanciotti, R. S. et al. Origin of the West Nile virus responsible for an outbreak of encephalitis in the northeastern United States. Science 286, 2333–2337 (1999).

    CAS  PubMed  Google Scholar 

  • 22.

    Dohm, D. J., Sardelis, M. R. & Turell, M. J. Experimental vertical transmission of West Nile virus by Culex pipiens (Diptera: Culicidae). J. Med. Entomol. 39, 640–644 (2002).

    PubMed  Google Scholar 

  • 23.

    Goddard, L. B., Roth, A. E., Reisen, W. K. & Scott, T. W. Vertical transmission of West Nile virus by three California Culex (Diptera: Culicidae) species. J. Med. Entomol. 40, 743–746 (2003).

    PubMed  Google Scholar 

  • 24.

    Lequime, S. & Lambrechts, L. Vertical transmission of arboviruses in mosquitoes: A historical perspective. Infect. Genet. Evol. 28, 681–690 (2014).

    PubMed  Google Scholar 

  • 25.

    Ronca, S. E., Murray, K. O. & Nolan, M. S. Cumulative incidence of West Nile virus infection, continental United States, 1999–2016. Emerg. Infect. Dis. 25, 325–327 (2019).

    PubMed Central  PubMed  Google Scholar 

  • 26.

    George, T. L. et al. Persistent impacts of West Nile virus on North American bird populations. Proc. Natl Acad. Sci. USA 112, 14290–14294 (2015).

    ADS  CAS  PubMed  Google Scholar 

  • 27.

    Kilpatrick, A. M. & Wheeler, S. S. Impact of West Nile Virus on bird populations: limited lasting effects, evidence for recovery, and gaps in our understanding of impacts on ecosystems. J. Med. Entomol. 56, 1491–1497 (2019).

    PubMed Central  PubMed  Google Scholar 

  • 28.

    LaDeau, S. L., Kilpatrick, A. M. & Marra, P. P. West Nile virus emergence and large-scale declines of North American bird populations. Nature 447, 710–713 (2007).

    ADS  CAS  PubMed  Google Scholar 

  • 29.

    Davis, C. T. et al. Phylogenetic analysis of North American West Nile virus isolates, 2001–2004: evidence for the emergence of a dominant genotype. Virology 342, 252–265 (2005).

    CAS  PubMed  Google Scholar 

  • 30.

    Añez, G. et al. Evolutionary dynamics of West Nile virus in the United States, 1999–2011: Phylogeny, selection pressure and evolutionary time-scale analysis. PLoS Negl. Trop. Dis. 7, e2245 (2013).

    PubMed Central  PubMed  Google Scholar 

  • 31.

    Di Giallonardo, F. et al. Fluid spatial dynamics of West Nile Virus in the United States: Rapid spread in a permissive host environment. J. Virol. 90, 862–872 (2016).

    PubMed Central  Google Scholar 

  • 32.

    Hadfield, J. et al. Twenty years of West Nile virus spread and evolution in the Americas visualized by Nextstrain. PLOS Pathog. 15, e1008042 (2019).

    CAS  PubMed Central  PubMed  Google Scholar 

  • 33.

    Dellicour, S. et al. Using viral gene sequences to compare and explain the heterogeneous spatial dynamics of virus epidemics. Mol. Biol. Evol. 34, 2563–2571 (2017).

    CAS  PubMed  Google Scholar 

  • 34.

    Dijkstra, E. W. A note on two problems in connexion with graphs. Numer. Math. 1, 269–271 (1959).

    MathSciNet  MATH  Google Scholar 

  • 35.

    McRae, B. H. Isolation by resistance. Evolution 60, 1551–1561 (2006).

    PubMed  Google Scholar 

  • 36.

    La Sorte, F. A. et al. The role of atmospheric conditions in the seasonal dynamics of North American migration flyways. J. Biogeogr. 41, 1685–1696 (2014).

    Google Scholar 

  • 37.

    Holmes, E. C. & Grenfell, B. T. Discovering the phylodynamics of RNA viruses. PLoS Comput. Biol. 5, e1000505 (2009).

    ADS  PubMed Central  PubMed  Google Scholar 

  • 38.

    Faria, N. R. et al. Genomic and epidemiological monitoring of yellow fever virus transmission potential. Science 361, 894–899 (2018).

    ADS  CAS  PubMed Central  PubMed  Google Scholar 

  • 39.

    Carrington, C. V. F., Foster, J. E., Pybus, O. G., Bennett, S. N. & Holmes, E. C. Invasion and maintenance of dengue virus type 2 and Type 4 in the Americas. J. Virol. 79, 14680–14687 (2005).

    CAS  PubMed Central  PubMed  Google Scholar 

  • 40.

    Rappole, J. H. et al. Modeling movement of West Nile virus in the western hemisphere. Vector Borne Zoonotic Dis. 6, 128–139 (2006).

    PubMed  Google Scholar 

  • 41.

    Goldberg, T. L., Anderson, T. K. & Hamer, G. L. West Nile virus may have hitched a ride across the Western United States on Culex tarsalis mosquitoes. Mol. Ecol. 19, 1518–1519 (2010).

    PubMed  Google Scholar 

  • 42.

    Swetnam, D. et al. Terrestrial bird migration and West Nile virus circulation, United States. Emerg. Infect. Dis. 24, 12 (2018).

  • 43.

    Kwan, J. L., Kluh, S. & Reisen, W. K. Antecedent avian immunity limits tangential transmission of West Nile virus to humans. PLoS ONE 7, e34127 (2012).

    ADS  CAS  PubMed Central  PubMed  Google Scholar 

  • 44.

    Duggal, N. K. et al. Genotype-specific variation in West Nile virus dispersal in California. Virology 485, 79–85 (2015).

    CAS  PubMed Central  PubMed  Google Scholar 

  • 45.

    McMullen, A. R. et al. Evolution of new genotype of West Nile virus in North America. Emerg. Infect. Dis. 17, 785–793 (2011).

    PubMed Central  PubMed  Google Scholar 

  • 46.

    Hepp, C. M. et al. Phylogenetic analysis of West Nile Virus in Maricopa County, Arizona: evidence for dynamic behavior of strains in two major lineages in the American Southwest. PLOS ONE 13, e0205801 (2018).

    PubMed Central  PubMed  Google Scholar 

  • 47.

    Goddard, L. B., Roth, A. E., Reisen, W. K. & Scott, T. W. Vector competence of California mosquitoes for West Nile virus. Emerg. Infect. Dis. 8, 1385–1391 (2002).

    PubMed Central  PubMed  Google Scholar 

  • 48.

    Richards, S. L., Mores, C. N., Lord, C. C. & Tabachnick, W. J. Impact of extrinsic incubation temperature and virus exposure on vector competence of Culex pipiens quinquefasciatus say (Diptera: Culicidae) for West Nile virus. Vector Borne Zoonotic Dis. 7, 629–636 (2007).

    PubMed Central  PubMed  Google Scholar 

  • 49.

    Anderson, S. L., Richards, S. L., Tabachnick, W. J. & Smartt, C. T. Effects of West Nile virus dose and extrinsic incubation temperature on temporal progression of vector competence in Culex pipiens quinquefasciatus. J. Am. Mosq. Control Assoc. 26, 103–107 (2010).

    PubMed Central  PubMed  Google Scholar 

  • 50.

    Worwa, G. et al. Increases in the competitive fitness of West Nile virus isolates after introduction into California. Virology 514, 170–181 (2018).

    CAS  PubMed  Google Scholar 

  • 51.

    Duggal, N. K., Langwig, K. E., Ebel, G. D. & Brault, A. C. On the fly: interactions between birds, mosquitoes, and environment that have molded west nile virus genomic structure over two decades. J. Med. Entomol. 56, 1467–1474 (2019).

    PubMed Central  PubMed  Google Scholar 

  • 52.

    Reed, K. D., Meece, J. K., Henkel, J. S. & Shukla, S. K. Birds, migration and emerging zoonoses: West Nile virus, Lyme disease, influenza A and enteropathogens. Clin. Med. Res. 1, 5–12 (2003).

    PubMed Central  PubMed  Google Scholar 

  • 53.

    Dusek, R. J. et al. Prevalence of West Nile virus in migratory birds during spring and fall migration. Am. J. Trop. Med. Hyg. 81, 1151–1158 (2009).

    Google Scholar 

  • 54.

    Samuel, G. H., Adelman, Z. N. & Myles, K. M. Temperature-dependent effects on the replication and transmission of arthropod-borne viruses in their insect hosts. Curr. Opin. Insect Sci. 16, 108–113 (2016).

    PubMed Central  PubMed  Google Scholar 

  • 55.

    Paz, S. & Semenza, J. C. Environmental drivers of West Nile fever epidemiology in Europe and Western Asia-a review. Int. J. Environ. Res. Public Health 10, 3543–3562 (2013).

    PubMed Central  PubMed  Google Scholar 

  • 56.

    Dohm, D. J., O’Guinn, M. L. & Turell, M. J. Effect of environmental temperature on the ability of Culex pipiens (Diptera: Culicidae) to transmit West Nile virus. J. Med. Entomol. 39, 221–225 (2002).

    PubMed  PubMed Central  Google Scholar 

  • 57.

    Kilpatrick, A. M., Meola, M. A., Moudy, R. M. & Kramer, L. D. Temperature, viral genetics, and the transmission of West Nile virus by Culex pipiens mosquitoes. PLoS Path. 4, e1000092 (2008).

  • 58.

    DeFelice, N. B. et al. Use of temperature to improve West Nile virus forecasts. PLoS Comput. Biol. 14, e1006047 (2018).

    PubMed Central  PubMed  Google Scholar 

  • 59.

    Morin, C. W. & Comrie, A. C. Regional and seasonal response of a West Nile virus vector to climate change. Proc. Natl Acad. Sci. USA 110, 15620–15625 (2013).

    ADS  CAS  PubMed  Google Scholar 

  • 60.

    Samy, A. M. et al. Climate change influences on the global potential distribution of the mosquito Culex quinquefasciatus, vector of West Nile virus and lymphatic filariasis. PLoS ONE 11, e0163863 (2016).

    PubMed Central  PubMed  Google Scholar 

  • 61.

    Dellicour, S. et al. Phylodynamic assessment of intervention strategies for the West African Ebola virus outbreak. Nat. Commun. 9, 2222 (2018).

    ADS  PubMed Central  PubMed  Google Scholar 

  • 62.

    Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

    CAS  PubMed Central  PubMed  Google Scholar 

  • 63.

    Larsson, A. AliView: a fast and lightweight alignment viewer and editor for large datasets. Bioinformatics 30, 3276–3278 (2014).

    CAS  PubMed Central  PubMed  Google Scholar 

  • 64.

    Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2–approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).

    ADS  PubMed Central  PubMed  Google Scholar 

  • 65.

    Suchard, M. A. et al. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol. 4, vey016 (2018).

    PubMed Central  PubMed  Google Scholar 

  • 66.

    Ayres, D. L. et al. BEAGLE 3: Improved performance, scaling, and usability for a high-performance computing library for statistical phylogenetics. Syst. Biol., https://doi.org/10.1093/sysbio/syz020 (2019).

  • 67.

    Tavaré, S. Some probabilistic and statistical problems in the analysis of DNA sequences. Lectures Math. Life Sci. 17, 57–86 (1986).

    MathSciNet  MATH  Google Scholar 

  • 68.

    Drummond, A. J., Ho, S. Y. W., Phillips, M. J. & Rambaut, A. Relaxed phylogenetics and dating with confidence. PLoS Biol. 4, 699–710 (2006).

    CAS  Google Scholar 

  • 69.

    Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901–904 (2018).

    CAS  PubMed Central  PubMed  Google Scholar 

  • 70.

    Fisher, A. A., Ji, X., Zhang, Z., Lemey, P. & Suchard, M. A. Relaxed random walks at scale. Syst. Biol., https://doi.org/10.1093/sysbio/syaa056 (2020).

  • 71.

    Lemey, P. et al. Unifying viral genetics and human transportation data to predict the global transmission dynamics of human influenza H3N2. PLoS Path. 10, e1003932 (2014).

    Google Scholar 

  • 72.

    Bedford, T. et al. Global circulation patterns of seasonal influenza viruses vary with antigenic drift. Nature 523, 217 (2015).

    ADS  CAS  PubMed Central  PubMed  Google Scholar 

  • 73.

    Hadfield, J. et al. Nextstrain: real-time tracking of pathogen evolution. Bioinformatics 34, 4121–4123 (2018).

    CAS  PubMed Central  PubMed  Google Scholar 

  • 74.

    Dellicour, S., Rose, R., Faria, N. R., Lemey, P. & Pybus, O. G. SERAPHIM: studying environmental rasters and phylogenetically informed movements. Bioinformatics 32, 3204–3206 (2016).

    CAS  PubMed Central  Google Scholar 

  • 75.

    Dellicour, S. et al. Using phylogeographic approaches to analyse the dispersal history, velocity, and direction of viral lineages–application to rabies virus spread in Iran. Mol. Ecol. 28, 4335–4350 (2019).

    PubMed Central  Google Scholar 

  • 76.

    Suchard, M. A., Weiss, R. E. & Sinsheimer, J. S. Models for estimating Bayes factors with applications to phylogeny and tests of monophyly. Biometrics 61, 665–673 (2005).

    MathSciNet  MATH  PubMed Central  PubMed  Google Scholar 


  • Source: Ecology - nature.com

    Ecological traits, genetic diversity and regional distribution of the macroalga Treptacantha elegans along the Catalan coast (NW Mediterranean Sea)

    Pushing the envelope with fusion magnets