in

Evaluating the effect of overharvesting on genetic diversity and genetic population structure of the coconut crab

  • 1.

    Ryman, N., Utter, F. & Laikre, L. Protection of intraspecific biodiversity of exploited fishes. Rev. Fish Biol. Fisheries. 5, 417–446 (1995).

    Google Scholar 

  • 2.

    Allendorf, F. W., England, P. R., Luikart, G., Ritchie, P. A. & Ryman, N. Genetic effects of harvest on wild animal populations. Trends Ecol. Evol. 23, 327–337 (2008).

    PubMed  Google Scholar 

  • 3.

    Pinsky, M. L. & Palumbi, S. R. Meta-analysis reveals lower genetic diversity in overfished populations. Mol. Ecol. 23, 29–39 (2014).

    PubMed  Google Scholar 

  • 4.

    Smith, P. J. Genetic diversity of marine fisheries resources: possible impacts of fishing. FAO Fisheries Technical Paper 344, 1–53 (1994).

    CAS  Google Scholar 

  • 5.

    Jorgensen, C. et al. Ecology-Managing evolving fish stocks. Science 318, 1247–1248 (2007).

    CAS  PubMed  Google Scholar 

  • 6.

    Chapman, J. R., Nakagawa, S., Coltman, D. W., Slate, J. & Sheldon, B. C. A quantitative review of heterozygosity–fitness correlations in animal populations. Mol. Ecol. 18, 2746–2765 (2009).

    CAS  PubMed  Google Scholar 

  • 7.

    Szulkin, M. & David, P. Negative heterozygosity–fitness correlations observed with microsatellites located in functional areas of the genome. Mol. Ecol. 20, 3949–3952 (2011).

    PubMed  Google Scholar 

  • 8.

    Danzmann, R. G., Ferguson, M. M. & Allendorf, F. W. Heterozygosity and oxygen-consumption rate as predictors of growth and developmental rate in rainbow trout. Physiol. Zool. 60, 211–220 (1987).

    Google Scholar 

  • 9.

    Thelen, G. C. & Allendorf, F. W. Heterozygosity-fitness correlations in rainbow trout: effects of allozyme loci or associative overdominance? Evolution 55, 1180–1187 (2001).

    CAS  PubMed  Google Scholar 

  • 10.

    Pujolar, J. M., Maes, G. E., Vancoillie, C. & Volckaert, F. A. M. Growth rate correlates to individual heterozygosity in the European eel. Anguilla anguilla L. Evolution 59, 189–199 (2005).

    CAS  PubMed  Google Scholar 

  • 11.

    Fassatoui, C., Chenuil, A. & Romdhane, M. S. Relationships between heterozygosity, growth parameters and age in the common pandora Pagellus erythrinus (Sparidae) in the Gabes Gulf (Tunisia). Mar. Ecol. Prog. Ser. 445, 251–261 (2012).

    ADS  Google Scholar 

  • 12.

    Guinand, B. et al. Genetic structure and heterozygosity–fitness correlation in young-of-the-year sole (Solea solea L.) inhabiting three contaminated West-European estuaries. J. Sea Res. 80, 35–49 (2013).

    ADS  Google Scholar 

  • 13.

    Zouros, E., Singh, S. M. & Miles, H. E. Growth rate in oysters: an overdominant phenotype and its possible explanations. Evolution 34, 856–867 (1980).

    CAS  PubMed  Google Scholar 

  • 14.

    Koehn, R. K. & Gaffney, P. M. Genetic heterozygosity and growth rate in Mytilus edulis. Mar. Biol. 82, 1–7 (1984).

    Google Scholar 

  • 15.

    Bierne, N., Beuzart, I., Vonau, V., Bonhomme, F. & Bédier, E. Microsatellite-associated heterosis in hatchery-propagated stocks of the shrimp Penaeus stylirostris. Aquaculture 184, 203–219 (2000).

    Google Scholar 

  • 16.

    Coltman, D. W., Bowen, W. D. & Wright, J. M. Birth weight and neonatal survival of harbour seal pups are positively correlated with genetic variation measured by microsatellites. Proc. R. Soc. Lond. B Biol. Sci. 265, 803–809 (1998).

    CAS  Google Scholar 

  • 17.

    Coulson, T. N. et al. Microsatellites reveal heterosis in red deer. Proc. R. Soc. Lond. B Biol. Sci. 265, 489–495 (1998).

    CAS  Google Scholar 

  • 18.

    Coltman, D. W., Pilkington, J. G., Smith, J. A. & Pemberton, J. M. Parasite-mediated selection against inbred soay sheep in a free-living island population. Evolution 53, 1259–1267 (1999).

    PubMed  Google Scholar 

  • 19.

    Slate, J. & Pemberton, J. M. Comparing molecular measures for detecting inbreeding depression. J. Evol. Biol. 15, 20–31 (2002).

    Google Scholar 

  • 20.

    Ledig, F. T., Guries, R. P. & Bonefeld, B. A. The relation of growth to heterozygosity in pitch pine. Evolution 37, 1227–1238 (1983).

  • 21.

    Jackson, J. B. et al. Historical overfishing and the recent collapse of coastal ecosystems. Science 293, 629–637 (2001).

    CAS  Google Scholar 

  • 22.

    Blueweiss, L. et al. Relationships between body size and some life history parameters. Oecologia 37, 257–272 (1978).

    ADS  CAS  PubMed  Google Scholar 

  • 23.

    Anderson, M. Sexual Selection. (Princeton University Press,1994).

  • 24.

    Jormalainen, V. Precopulatory mate guarding in crustaceans: male competitive strategy and intersexual conflict. Q. REV. Biol. 73, 275–304 (1998).

    Google Scholar 

  • 25.

    Sato, T., Ashidate, M., Jinbo, T. & Goshima, S. Variation of sperm allocation with male size and recovery rate of sperm numbers in spiny king crab Paralithodes brevipes. Mar. Ecol. Prog. Ser. 312, 189–199 (2006).

    ADS  Google Scholar 

  • 26.

    Sato, T. & Goshima, S. Impacts of male-only fishing and sperm limitation in manipulated populations of an unfished crab, Hapalogaster dentata. Mar. Ecol. Prog. Ser. 313, 193–204 (2006).

    ADS  Google Scholar 

  • 27.

    Moland, E., Moland, O. E. & Stenseth, N. C, Maternal influences on offspring size variation and viability in wild European lobster Homarus gammarus. Mar. Ecol. Prog. Ser. 400, 165–173 (2010).

    ADS  Google Scholar 

  • 28.

    Sato, T., Hamano, K., Sugaya, T. & Dan, S. Effects of maternal influences and timing of spawning on intraspecific variations in larval qualities of the Kuruma prawn Marsupenaeus japonicus. Mar. Biol. 164, 70 (2017).

    Google Scholar 

  • 29.

    Drew, M. M., Harzsch, S., Stensmyr, M., Erland, S. & Hansson, B. S. A review of the biology and ecology of the robber crab, Birgus latro (Linnaeus, 1767) (Anomura: Coenobitidae). Zool. Anz. 249, 45–67 (2010).

    Google Scholar 

  • 30.

    Laidre, M. E. Coconut crabs. Curr. Biol. 28, 58–60 (2018).

    Google Scholar 

  • 31.

    Laidre, M. E. Ruler of the atoll: the world’s largest land invertebrate. Front. Ecol. Environ. 15, 527–528 (2017).

    Google Scholar 

  • 32.

    Amesbury, S. S. Biological studies on the coconut crab (Birgus latro) in the Mariana Islands. (Agricultural Experiment Station, College of Agriculture and Life Sciences, University of Guam, 1980).

  • 33.

    Brown, I. W., & Fielder, D. R. Project overview and literature survey in The Coconut Crab: Aspects of Birgus latro Biology and Ecology in Vanuatu, ACIAR Monograph 8 (eds. Brown, I.W. & Fielder, D. R.) 1–11 (Australian Centre for International Agricultural Research, 1991).

  • 34.

    Fletcher, W. J. Coconut crabs in Nearshore Marine Resources of the South Pacific (eds. Wright, A. & Hill, L.) 643–681 (Institute of Pacific Studies, University of the South Pacific, 1993).

  • 35.

    Eldredge, L. G. Birgus latro. IUCN Red List of Threatened Species (1996). Available at: http://www.iucnredlist.org/details/2811/0. (Accessed 9 January 2019).

  • 36.

    Ministry of the Environment, Government of Japan. The 4th Version of the Red Data Book (2018). Website https://ikilog.biodic.go.jp/Rdb/booklist (accessed 27 February 2019) (in Japanese).

  • 37.

    Fujita, Y. Yashigani to hitobito no kurashi. Cancer 19, 41–51 (2010). in Japanese.

    Google Scholar 

  • 38.

    Sato, T. & Yoseda, K. Influence of size-and sex-biased harvesting on reproduction of the coconut crab Birgus latro. Mar. Ecol. Prog. Ser. 402, 171–178 (2010).

    ADS  Google Scholar 

  • 39.

    Sato, T. Impacts of large male-selective harvesting on reproduction: illustration with large decapod crustacean resources. Aqua-BioSci. Monogr. 5, 67–102 (2012).

    CAS  Google Scholar 

  • 40.

    Sato, T., Yoseda, K., Abe, O. & Shibuno, T. Male maturity, number of sperm, and spermatophore size relationships in the coconut crab Birgus latro on Hatoma Island, southern Japan. J. Crust. Biol. 28, 663–668 (2008).

    Google Scholar 

  • 41.

    Sato, T. Plausible causes for sperm-store variations in the coconut crab Birgus latro under large male-selective harvesting. Aquat. Biol. 13, 11–19 (2011).

    Google Scholar 

  • 42.

    Sato, T., Yoseda, K., Okuzawa, K. & Suzuki, N. Sperm limitation: possible impacts of large male-selective harvesting on reproduction of the coconut crab Birgus latro. Aquat. Biol. 10, 23–32 (2010).

    CAS  Google Scholar 

  • 43.

    Sato, T. & Yoseda, K. Reproductive season and female maturity size of coconut crab Birgus latro in Hatoma Island, southern part of Japan. Fish. Sci. 74, 1277–1282 (2008).

    CAS  Google Scholar 

  • 44.

    Sato, T. & Suzuki, N. Female size as a determinant of larval size, weight, and survival period in the coconut crab, Birgus latro. J. Crust. Biol. 30, 624–628 (2010).

    Google Scholar 

  • 45.

    Suyama, Y. & Matsuki, Y. MIG-seq: an effective PCR-based method for genome-wide single-nucleotide polymorphism genotyping using the next-generation sequencing platform. Sci. Rep. 5, 16963 nature.com/articles/srep16963 (2015).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 46.

    Wachi, N., Matsubayashi, K. W. & Maeto, K. Application of next-generation sequencing to the study of non-model insects. Entomol. Sci. 21, 3–11 (2018).

    Google Scholar 

  • 47.

    Fletcher, W. J., Brown, I. W. & Fielder, D. R. Moulting and growth characteristics in The Coconut Crab: Aspects of Birgus latro Biology and Ecology in Vanuatu, ACIAR Monograph 8 (eds. Brown, I.W. & Fielder, D. R.) 35–60 (Australian Centre for International Agricultural Research, 1991).

  • 48.

    Drew, M. M., Smith, M. J. & Hansson, B. S. Factors influencing growth of giant terrestrial robber crab Birgus latro (Anomura: Coenobitidae) on Christmas Island. Aquat. Biol. 19, 129–141 (2013).

    Google Scholar 

  • 49.

    Sato, T. et al. Growth of the coconut crab Birgus latro estimated from mark-recapture using passive integrated transponder (PIT) tags. Aquat. Biol. 19, 143–152 (2013).

    Google Scholar 

  • 50.

    Swartz, W., Sala, E., Tracey, S., Watson, R. & Pauly, D. The spatial expansion and ecological footprint of fisheries (1950 to present). PloS One 5(12), e15143, https://doi.org/10.1371/journal.pone.0015143 (2010).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 51.

    McCauley, D. J. et al. Marine defaunation: animal loss in the global ocean. Science 347, 1255641 (2015).

    PubMed  Google Scholar 

  • 52.

    Cloern, J. E. et al. Human activities and climate variability drive fast-paced change across the world’s estuarine–coastal ecosystems. Global Change Biol. 22, 513–529 (2016).

    ADS  Google Scholar 

  • 53.

    Hamasaki, K., Sugizaki, M., Dan, S. & Kitada, S. Effect of temperature on survival and developmental period of coconut crab (Birgus latro) larvae reared in the laboratory. Aquaculture 292, 259–263 (2009).

    Google Scholar 

  • 54.

    Hamasaki, K., Kato, S., Murakami, Y., Dan, S. & Kitada, S. Larval growth, development and duration in terrestrial hermit crabs. Sex. Early Dev. Aquat. Org. 1, 93–107 (2015).

    Google Scholar 

  • 55.

    Hamasaki, K., Sugizaki, M., Sugimoto, A., Murakami, Y. & Kitada, S. Emigration behaviour during sea-to-land transition of the coconut crab Birgus latro: effects of gastropod shells, substrata, shelters and humidity. J. Exp. Mar. Biol. Ecol. 403, 81–89 (2011).

    Google Scholar 

  • 56.

    Hamasaki, K., Ishiyama, N. & Kitada, S. Settlement behavior and substrate preference of the coconut crab Birgus latro megalopae on natural substrata in the laboratory. J. Exp. Mar. Biol. Ecol. 468, 21–28 (2015).

    Google Scholar 

  • 57.

    Nishikawa, A. & Sakai, K. Settlement-competency period of planulae and genetic differentiation of the scleractinian coral Acropora digitifera. Zool. Sci. 22, 391–399 (2005).

    PubMed  Google Scholar 

  • 58.

    Nakajima, Y., Nishikawa, A., Iguchi, A. & Sakai, K. Gene flow and genetic diversity of a broadcast-spawning coral in northern peripheral populations. PLoS One 5, e11149, https://doi.org/10.1371/journal.pone.0011149 (2010).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 59.

    Weese, D. A., Fujita, Y., Hidaka, M. & Santos, S. R. The long and short of it: Genetic variation and population structure of the anchialine atyid shrimp Caridina rubella on Miyako-Jima, Japan. J. Crust. Biol. 32, 109–117 (2012).

    Google Scholar 

  • 60.

    Lavery, S., Moritz, C. & Fielder, D. R. Changing patterns of population structure and gene flow at different spatial scales in Birgus latro (the coconut crab). Heredity 74, 531 (1995).

    CAS  Google Scholar 

  • 61.

    Lavery, S., Moritz, C. & Fielder, D. R. Indo-Pacific population structure and evolutionary history of the coconut crab Birgus latro. Mol. Ecol. 5, 557–570 (1996).

    Google Scholar 

  • 62.

    Hamasaki, K. et al. Genetic diversity and demographic history of the terrestrial hermit crabs Birgus latro and Coenobita brevimanus in the north-western Pacific region. J. Crust. Biol. 35, 793–803 (2015).

    Google Scholar 

  • 63.

    R core team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2016).

  • 64.

    Okinawa Prefecture. Riyou kankei siryou. (2017). Website https://www.pref.okinawa.jp/site/kikaku/chiikirito/ritoshinko/h28ritoukankeisiryou.html (accessed 5 December 2019) (in Japanese).

  • 65.

    Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnology 3, 294–299 (1994).

    CAS  Google Scholar 

  • 66.

    Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. journal 1, 10–12 (2011). embnetjournal/article/view/200.

    Google Scholar 

  • 67.

    Catchen, J. M., Amores, A., Hohenlohe, P., Cresko, W. & Postlethwait, J. H. Stacks: building and genotyping loci de novo from short-read sequences. G3. 1, 171–182 (2011).

    CAS  PubMed  Google Scholar 

  • 68.

    Catchen, J., Hohenlohe, P. A., Bassham, S., Amores, A. & Cresko, W. A. Stacks: an analysis tool set for population genomics. Mol. Ecol. 22, 3124–3140 (2013).

    PubMed  PubMed Central  Google Scholar 

  • 69.

    Foll, M. & Gaggiotti, O. A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: a Bayesian perspective. Genetics 180, 977–993 (2008).

  • 70.

    Paradis, E. pegas: an R package for population genetics with an integrated–modular approach. Bioinformatics 26, 419–420 (2010).

    CAS  PubMed  Google Scholar 

  • 71.

    Excoffier, L. & Lischer, H. E. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Res. 10, 564–567 (2010).

    Google Scholar 

  • 72.

    Peakall, P. E. & Smouse, R. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28, 2537–2539 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 73.

    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. Royal Stat. Soc. B 57, 289–300 (1995).

    MathSciNet  MATH  Google Scholar 

  • 74.

    Coulon, A. GENHET: an easy-to-use R function to estimate individual heterozygosity. Mol. Ecol. Res. 10, 167–169 (2010).

    CAS  Google Scholar 

  • 75.

    Sundqvist, L., Keenan, K., Zackrisson, M., Prodöhl, P. & Kleinhans, D. Directional genetic differentiation and relative migration. Ecol. Evol. 6, 3461–3475 (2016).

    PubMed  PubMed Central  Google Scholar 


  • Source: Ecology - nature.com

    Dimorphic flowers modify the visitation order of pollinators from male to female flowers

    Climate change will affect global water availability through compounding changes in seasonal precipitation and evaporation