in

Evaluating the tradeoffs of a generalist parasitoid fungus, Ophiocordyceps unilateralis, on different sympatric ant hosts

  • 1.

    Moore, J., Adamo, S. & Thomas, F. Manipulation: expansion of the paradigm. Behav. Processes 68, 283–287 (2005).

  • 2.

    Dawkins, R. The extended phenotype: the long reach of the gene. Oxford University Press, Oxford (1982).

  • 3.

    Andersen, S. B. et al. The life of a dead ant: the expression of an adaptive extended phenotype. Am. Nat. 174, 424–433 (2009).

  • 4.

    Hughes, D. P. et al. Behavioral mechanisms and morphological symptoms of zombie ants dying from fungal infection. BMC Ecol. 11, 13 (2011).

  • 5.

    Berger, V., Galaktionov, K. V. & Prokof’ev, V. V. Effect of parasites on host adaptation to abiotic environmental factors: host-parasite relationship of trematode parthenites–mollusc system. Parazitologiia 35, 192–200 (2001).

    • PubMed
    • Google Scholar
  • 6.

    Poulin, R. Evolutionary ecology of parasites. Princeton University Press, Princeton (2011).

  • 7.

    Schmid-Hempel, P. Evolutionary parasitology the integrated study of infections, immunology, ecology, and genetics. Oxford University Press, Oxford (2011)

  • 8.

    Combes, C. Parasitism: the ecology and evolution of intimate interactions. University of Chicago Press, Chicago (2001)

  • 9.

    Evans, H. C., Elliot, S. L. & Hughes, D. P. Ophiocordyceps unilateralis: A keystone species for unraveling ecosystem functioning and biodiversity of fungi in tropical forests? Commun. Integr. Biol. 4, 598–602 (2011).

  • 10.

    Pontoppidan, M. B., Himaman, W., Hywel-Jones, N. L., Boomsma, J. J. & Hughes, D. P. Graveyards on the move: the spatio-temporal distribution of dead ophiocordyceps-infected ants. Plos One 4, e4835 (2009).

  • 11.

    Evans, H. C., Elliot, S. L. & Hughes, D. P. Hidden diversity behind the zombie-ant fungus Ophiocordyceps unilateralis: four new species described from carpenter ants in Minas Gerais, Brazil. Plos One 6, e17024 (2011).

  • 12.

    Luangsa-Ard, J. J., Ridkaew, R., Tasanathai, K., Thanakitpipattana, D. & Hywel-Jones, N. Ophiocordyceps halabalaensis: a new species of Ophiocordyceps pathogenic to Camponotus gigas in Hala Bala Wildlife Sanctuary, Southern Thailand. Fungal. Biol. 115, 608–614 (2011).

  • 13.

    Kepler, R. M., Kaitsu, Y., Tanaka, E., Shimano, S. & Spatafora, J. W. Ophiocordyceps pulvinata sp. nov., a pathogen of ants with a reduced stroma. Mycoscience 52, 39–47 (2011).

    • Article
    • Google Scholar
  • 14.

    Kobmoo, N., Mongkolsamrit, S., Tasanathai, K., Thanakitpipattana, D. & Luangsa-Ard, J. J. Molecular phylogenies reveal host-specific divergence of Ophiocordyceps unilateralis sensu lato following its host ants. Mol. Ecol. 21, 3022–3031 (2012).

  • 15.

    Araújo, J. P. M., Evans, H. C., Geiser, D. M., Mackay, W. P. & Hughes, D. P. Unravelling the diversity behind the Ophiocordyceps unilateralis (Ophiocordycipitaceae) complex: Three new species of zombie-ant fungi from the Brazilian Amazon. Phytotaxa 220, 224–238 (2015).

  • 16.

    Chang, L.-W. et al. Species composition, size-class structure and diversity of the Lienhuachih forest dynamics plot in a subtropical evergreen broad-leaved forest in central Taiwan. Taiwan J. For. Sci. 25, 81–95 (2010).

    • Google Scholar
  • 17.

    Sun, P.-F., Chen, P.-H. & Lin, W.-J. Lin, C.-C. & Chou, J.-Y. Variation in the ability of fungi in the extrafloral nectar of Mallotus paniculatus to attract ants as plant defenders. Mycosphere 9, 178–188 (2018).

  • 18.

    Rehner, S. A. & Buckley, E. A Beauveria phylogeny inferred from nuclear ITS and EF1-alpha sequences: evidence for cryptic diversification and links to Cordyceps teleomorphs. Mycologia 97, 84–98 (2005).

  • 19.

    Glass, N. L. & Donaldson, G. C. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl. Environ. Microbiol. 61, 1323–1330 (1995).

  • 20.

    Edgar, R. C. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5, 113 (2004).

  • 21.

    Hall, T. A. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Window 95/98/NT. Nucleic Acids Symp. Ser. 41, 95–98 (1999).

    • CAS
    • Google Scholar
  • 22.

    Kumar, S., Stecher, G. & Tamura, K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874 (2016).

  • 23.

    Felsenstein, J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791 (1985).

  • 24.

    Clement, M., Posada, D. & Crandall, K. A. TCS: a computer program to estimate gene genealogies. Mol. Ecol. 9, 1657–1659 (2000).

  • 25.

    Templeton, A. R., Crandall, K. A. & Sing, C. F. A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation. Genetics 132, 619–633 (1992).

  • 26.

    Nguyen, L. T., Schmidt, H. A., Von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).

  • 27.

    Puillandre, N., Lambert, A., Brouillet, S. & Achaz, G. ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Mol. Ecol. 21, 1864–1877 (2012).

  • 28.

    Lin, C.-C. & Wu, W.-J. The ant fauna of Taiwan (Hymenoptera: Formicidae), with the keys to subfamilies and genera. Annu. Natl. Taiwan Mus. 46, 5–69 (2003).

    • Google Scholar
  • 29.

    Terayama, M. A synopsis of the family Formicidae of Taiwan (Insecta: Hymenoptera). Liberal Arts, Bull. Kanto Gakuen Univ. 17, 81–266 (2009).

    • Google Scholar
  • 30.

    Leong, C.-M., Hsiao, Y. & Shiao, S.-F. Polyrhachis (Cyrtomyrma) debilis Emery, 1887 (Hymenoptera: Formicidae), a New Record of Ant Species in Taiwan. Formosan Entomologist 35, 143–147 (2015).

  • 31.

    Chiotis, M., Jermiin, L. S. & Crozier, R. H. A molecular framework for the phylogeny of the ant subfamily Dolichoderinae. Mol. Phylogenet. Evol. 17, 108–116 (2000).

  • 32.

    Yeung, E. C. The use of histology in the study of plant tissue culture systems—some practical comments. In Vitro Cell. Dev. 35, 137–143 (1999).

    • Article
    • Google Scholar
  • 33.

    Zhang, N. et al. Members of the Fusarium solani species complex that cause infections in both humans and plants are common in the environment. J. Clin. Microbiol. 44, 2186–2190 (2006).

  • 34.

    Pal, M., Dave, P. & Manna, A. K. Emerging role of Aspergillus flavus in human and animal disorders. J. Mycopathol. Res. 52, 211–216 (2014).

    • Google Scholar
  • 35.

    Srinivas, C. et al. Fusarium oxysporum f. sp. lycopersici causal agent of vascular wilt disease of tomato: Biology to diversity–A review. Saudi J. Biol. Sci. 26, 1315–1324 (2019).

  • 36.

    Futuyma, D. J. & Moreno, G. The evolution of ecological specialization. Annu. Rev. Ecol. Evol. Syst. 19, 207–233 (1988).

    • Article
    • Google Scholar
  • 37.

    Agosta, S. J., Janz, N. & Brooks, D. R. How specialists can be generalists: resolving the” parasite paradox” and implications for emerging infectious disease. Zoologia (Curitiba) 27, 151–162 (2010).

    • Article
    • Google Scholar
  • 38.

    Fallon, S. M., Bermingham, E. & Ricklefs, R. E. Host specialization and geographic localization of avian malaria parasites: a regional analysis in the Lesser Antilles. Am. Nat. 165, 466–480 (2005).

  • 39.

    Combes, C. Ethological aspects of parasite transmission. Am. Nat. 138, 866–880 (1991).

    • Article
    • Google Scholar
  • 40.

    Bush, A. O. & Kennedy, C. R. Host fragmentation and helminth parasites: hedging your bets against extinction. Int. J. Parasitol. 24, 1333–1343 (1994).

  • 41.

    Cooper, N. et al. Phylogenetic host specificity and understanding parasite sharing in primates. Ecol. Lett. 15, 1370–1377 (2012).

  • 42.

    Burns, J. H. & Strauss, S. Y. More closely related species are more ecologically similar in an experimental test. Proc. Natl. Acad. Sci. USA 108, 5302–5307 (2011).

  • 43.

    Huang, S., Bininda-Emonds, O. R., Stephens, P. R., Gittleman, J. L. & Altizer, S. Phylogenetically related and ecologically similar carnivores harbour similar parasite assemblages. J. Anim. Ecol. 83, 671–680 (2014).

  • 44.

    Nosil, P. & Mooers, A. Testing hypotheses about ecological specialization using phylogenetic trees. Evolution 59, 2256–2263 (2005).

  • 45.

    Janz, N., Nyblom, K. & Nylin, S. Evolutionary dynamics of host-plant specialization: a case study of the tribe Nymphalini. Evolution 55, 783–796 (2001).

  • 46.

    West-Eberhard, M. J. Developmental plasticity and evolution. Oxford University Press, Oxford (2003).

  • 47.

    Lande, R. & Arnold, S. J. The measurement of selection on correlated characters. Evolution 37, 1210–1226 (1983).

  • 48.

    Gould, S. J. & Lewontin, R. C. The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. Proc. R. Soc. B 205, 581–598 (1979).

  • 49.

    Janzen, D. H. & Martin, P. S. Neotropical anachronisms: the fruits the gomphotheres ate. Science 215, 19–27 (1982).

  • 50.

    McLennan, D. A. & Brooks, D. R. Complex histories of speciation and dispersal in communities: a re-analysis of some Australian bird data using BPA. J. Biogeogr. 29, 1055–1066 (2002).

    • Article
    • Google Scholar
  • 51.

    Janz, N., Nylin, S. & Wahlberg, N. Diversity begets diversity: host expansions and the diversification of plant-feeding insects. BMC Evol. Biol. 6, 4 (2006).

  • 52.

    Janz, N. & Nylin, S. The oscillation hypothesis of host-plant range and speciation. In: Tilmon, K. (ed.) Specialization, speciation, and radiation: the evolutionary biology of herbivorous insects. University of California Press, Oakland, pp 203–215 (2008).

  • 53.

    Nylin, S. & Janz, N. Butterfly host plant range: an example of plasticity as a promoter of speciation? Evol. Ecol. 23, 137–146 (2009).

    • Article
    • Google Scholar
  • 54.

    Mayr, E. Animal species and evolution. Harvard University Press, Cambridge (1963).

  • 55.

    Thompson, J. N. The coevolutionary process. University of Chicago Press, Chicago (1994).

  • 56.

    Bush, G. L. Sympatric speciation in animals: new wine in old bottles. Trends Ecol. Evol. 9, 285–288 (1994).

  • 57.

    Berlocher, S. H. & Feder, J. L. Sympatric speciation in phytophagous insects: moving beyond controversy? Annu. Rev. Entomol. 47, 773–815 (2002).

  • 58.

    Agosta, S. J. & Klemens, J. A. Ecological fitting by phenotypically flexible genotypes: implications for species associations, community assembly and evolution. Ecol. Lett. 11, 1123–1134 (2008).

  • 59.

    Robson, S. K. & Kohout, R. J. A review of the nesting habits and socioecology of the ant genus Polyrhachis Fr. Smith. Asian Myrmecol. 1, 81–99 (2007).

    • Google Scholar
  • 60.

    Severinghaus, L. L. Cavity dynamics and breeding success of the Lanyu Scops Owl (Otus elegans). J. Ornithol. 148, 407–416 (2007).

    • Article
    • Google Scholar
  • 61.

    Mongkolsamrit, S. et al. Life cycle, host range and temporal variation of Ophiocordyceps unilateralis/Hirsutella formicarum on Formicine ants. J. Invertebr. Pathol. 111, 217–224 (2012).

  • 62.

    Hughes, D. P., Wappler, T. & Labandeira, C. C. Ancient death-grip leaf scars reveal ant-fungal parasitism. Biol. Lett. 7, 67–70 (2011).

  • 63.

    Loreto, R. G., Elliot, S. L., Freitas, M. L., Pereira, T. M. & Hughes, D. P. Long-term disease dynamics for a specialized parasite of ant societies: a field study. Plos One 9, e103516 (2014).

  • 64.

    Kepler, R. M., Kaitsu, Y., Tanaka, E., Shimano, S. & Spatafora, J. W. Ophiocordyceps pulvinata sp. nov., a pathogen with a reduced stroma. Mycoscience 52, 39–47 (2011).

  • 65.

    De Bekker, C. et al. Species-specific ant brain manipulation by a specialized fungal parasite. BMC Evol. Biol. 14, 166 (2014).

  • 66.

    Loreto, R. G. et al. Evidence for convergent evolution of host parasitic manipulation in response to environmental conditions. Evolution 72, 2144–2155 (2018).

  • 67.

    Vega, F. E. Insect pathology and fungal endophytes. J. Invertebr. Pathol. 98, 277–279 (2008).

  • 68.

    Vidal, S. & Jaber, L. R. Entomopathogenic fungi as endophytes: plant–endophyte–herbivore interactions and prospects for use in biological control. Curr. Sci. 109, 46–54 (2015).

    • Google Scholar
  • 69.

    Chung, T.-Y. et al. Zombie ant heads are oriented relative to solar cues. Fungal. Ecol. 25, 22–28 (2017).

    • Article
    • Google Scholar

  • Source: Ecology - nature.com

    Characterization of viruses in a tapeworm: phylogenetic position, vertical transmission, and transmission to the parasitized host

    Effects of parental exposure to glyphosate-based herbicides on embryonic development and oxidative status: a long-term experiment in a bird model