in

Evaluation of semiochemical based push-pull strategy for population suppression of ambrosia beetle vectors of laurel wilt disease in avocado

  • 1.

    Farrell, B. D. et al. The evolution of agriculture in beetles (Curculionidae: Scolytinae and Platypodinae). Evolution. 55, 2011–2027 (2001).

  • 2.

    Hulcr, J. & Stelinski, L. L. The ambrosia symbiosis: from evolutionary ecology to practical management. Annu. Rev. Entomol. 62, 285–303 (2017).

  • 3.

    Kirkendall, L. R. The evolution of mating systems in bark and ambrosia beetles (Coleoptera: Scolytineae and Platypodidae). Zool. J. Linn. Soc. 77, 293–352 (1983).

    • Article
    • Google Scholar
  • 4.

    Fraedrich, S. W. et al. A Fungal symbiont of the redbay ambrosia beetle causes a lethal wilt in redbay and other lauraceae in the southeastern United States. Plant Dis. 92, 215–224 (2008).

  • 5.

    Paine, T. D., Raffa, K. F. & Harrington, T. C. Interactions among Scolytine bark beetles, their associated fungi, and live host conifers. Annu. Rev. Entomol. 42, 179–206 (1997).

  • 6.

    Batra, L. R. Ambrosia fungi: extent of specificity to ambrosia beetles. Science. 153, 193–195 (1966).

  • 7.

    Carrillo, D. et al. Lateral transfer of a phytopathogenic symbiont among native and exotic ambrosia beetles. Plant Pathol. 63, 54–62 (2014).

    • Article
    • Google Scholar
  • 8.

    Kostovcik, M. et al. The ambrosia symbiosis is specific in some species and promiscuous in others: evidence from community pyrosequencing. ISME J. 9, 126–138 (2015).

  • 9.

    Saucedo-Carabez, J. R., Ploetz, R. C., Konkol, J. L., Carrillo, D. & Gazis, R. Partnerships between ambrosia beetles and fungi: lineage-specific promiscuity among vectors of the laurel wilt pathogen, Raffaelea lauricola. Microb. Ecol. 76, 925–940 (2018).

  • 10.

    Wingfield, M. J. et al. Novel associations between ophiostomatoid fungi, insects and tree hosts: current status—future prospects. Biol. Invasions. 19, 3215–3228 (2017).

    • Article
    • Google Scholar
  • 11.

    Rabaglia, R. J., Dole, S. A. & Cognato, A. I. Review of American Xyleborina (Coleoptera; Curculionidae: Scolytinae) occuring north of Mexico, with an illustrated key. Ann. Entomol. Soc. Am. 99, 1034–1056 (2006).

    • Article
    • Google Scholar
  • 12.

    Kendra, P. E., Montgomery, W. S., Niogret, J. & Epsky, N. D. An uncertain future for American Lauraceae: A lethal threat from redbay ambrosia beetle and laurel wilt disease (A Review). Am. J. Plant Sci. 4, 727–738 (2013).

    • Article
    • Google Scholar
  • 13.

    Mayfield, A. et al. Suitability of California bay laurel and other species as hosts for the non-native redbay ambrosia beetle and granulate ambrosia beetle. Agric. For. Entomol. 15, 227–235 (2013).

    • Article
    • Google Scholar
  • 14.

    (USDA NASS) USDA National Agricultural Statistics Survey Quick Stats. https://quickstats.nass.usda.gov/results/594CE3F3-9DCB-3D62-983D-5485A8CD27B3?pivot=short_desc).15 December 2018 (2018).

  • 15.

    Evans, E. A., Crane, J., Hodges, A. & Osborne, J. L. Potential economic impact of laurel wilt disease on the Florida avocado industry. HortTechnology. 20, 234–238 (2010).

    • Article
    • Google Scholar
  • 16.

    Ploetz, R. C. et al. Laurel Wilt, Caused by Raffaelea lauricola, is Confirmed in Miami-Dade County, Center of Florida’s Commercial Avocado Production. Plant Dis. 95, 1589–1589 (2011).

  • 17.

    Crane, J. H., Balerdi, C. & Maguire, I. Avocado Growing in the Florida Landscape, Gainesville, FL, USA: Institute of Food and Agricultural Sciences Extension, University of Florida Circular 1034. [http://edis.ifas.ufl.edu/mg213] Accessed March 23, 2019 (2007).

  • 18.

    Knight, R. L. History, distribution, and uses. In: Whiley, A. W., Shaffer, B. & Wholstenholm, N. eds. The Avocado: Botany, Production, and Uses (2002).

  • 19.

    Ploetz, R. C. et al. Responses of avocado to laurel wilt, caused by Raffaelea lauricola. Plant Pathol. 61, 801–808 (2012).

    • Article
    • Google Scholar
  • 20.

    Mayfield, A. E. et al. Ability of the redbay ambrosia beetle (Coleoptera: Curculionidae: Scolytinae) to bore into young avocado (Lauraceae) plants and transmit the laurel wilt pathogen (Raffaelea sp). Fla. Entomol. 91, 485–487 (2008).

    • Article
    • Google Scholar
  • 21.

    Kendra, P. E. et al. Evaluation of seven essential oils identifies cubeb oil as most effective attractant for detection of Xyleborus glabratus. J. Pest Sci. 87, 681–689 (2014).

    • Article
    • Google Scholar
  • 22.

    Carrillo, D., Duncan, R. E. & Peña, J. E. Ambrosia beetles (Coleoptera: Curculionidae: Scolytinae) that breed in avocado wood in Florida. Fla. Entomol. 95, 573–579 (2012).

    • Article
    • Google Scholar
  • 23.

    Menocal, O., Kendra, P. E., Montgomery, W. S., Crane, J. H. & Carrillo, D. Vertical distribution and daily flight periodicity of ambrosia beetles (Coleoptera: Curculionidae) in Florida avocado orchards affected by laurel wilt. J. Econ. Entomol. 111, 1190–1196 (2018).

  • 24.

    Hulcr, J., Mann, R. & Stelinski, L. L. The scent of a partner: ambrosia beetles are attracted to volatiles from their fungal symbionts. J. Chem. Ecol. 37, 1374–1377 (2011).

  • 25.

    Cognato, A. I., Hulcr, J., Dole, S. A. & Jordal, B. H. Phylogeny of haplo-diploid, fungus-growing ambrosia beetles (Curculionidae: Scolytinae: Xyleborini) inferred from molecular and morphological data. Zool. Scr. 40, 174–186 (2011).

    • Article
    • Google Scholar
  • 26.

    Saucedo, J. R. et al. Nutritional symbionts of a putative vector, Xyleborus bispinatus, of the laurel wilt pathogen of avocado, Raffaelea lauricola. Symbiosis. 75, 29–38 (2018).

  • 27.

    Hughes, M. A. et al. Evaluation of repellents for the redbay ambrosia beetle, Xyleborus glabratus, vector of the laurel wilt pathogen. J. Appl. Entomol. 141, 653–664 (2017).

  • 28.

    Kendra, P. E. et al. North American Lauraceae: terpenoid emissions, relative attraction and boring preferences of redbay ambrosia beetle, Xyleborus glabratus (Coleoptera: Curculionidae: Scolytinae). Plos One 9, e102086 (2014).

  • 29.

    Ranger, C. M., Reding, M. E., Persad, A. B. & Herms, D. A. Ability of stress-related volatiles to attract and induce attacks by Xylosandrus germanus and other ambrosia beetles. Agric. For. Entomol. 12, 177–185 (2010).

    • Article
    • Google Scholar
  • 30.

    Byers, A. B., Sadowsky, A. & Levi-Zada, A. Index of host habitat preference explored by movement-based simulations and trap captures. J Anim Ecol. 87, 1320–1330 (2018).

  • 31.

    Gomez, D. F. et al. Species delineation within the Euwallacea fornicates (Coleoptera: Curculionidae) complex revealed by morphometric and phylogenetic analyses. Insect Syst. Divers. 2(6), 1–11 (2018).

    • Google Scholar
  • 32.

    Menocal, O. et al. Rearing Xyleborus volvulus (Coleoptera: Curculionidae) on media containing sawdust from avocado or silkbay, with or without Raffaelea lauricola (Ophiostomatales: Ophiostomataceae). Environ. Entomol. 46, 1275–1283 (2017).

  • 33.

    Menocal, O. et al. Xyleborus bispinatus reared on artificial media in the presence or absence of the laurel wilt pathogen (Raffaelea lauricola). Insects. 9 (2018).

  • 34.

    Martini, X. et al. The fungus Raffaelea lauricola modified behavior of its symbiont and vector, the redbay ambrosia beetle (Xyleborus Glabratus), by altering host plant volatile production. J Chem Ecol 43, 519–51 (2017).

  • 35.

    Martini, X., Hughes, M. A., Smith, J. A. & Stelinski, L. L. Attraction of redbay ambrosia beetle, Xyleborus glabratus, to leaf volatiles of its host plants in North America. J. Chem. Ecol. 41, 613–621 (2015).

  • 36.

    Hughes, M. A. et al. Recovery plan for laurel wilt on redbay and other forest species caused by Raffaelea lauricola and disseminated by xyleborus glabratus (2015).

  • 37.

    Rodgers, L., Derksen, A. & Pernas, T. Expansion and impact of laurel wilt in the Florida Everglades. Florida Entomol. 97, 1247–1250 (2014).

    • Article
    • Google Scholar
  • 38.

    Ploetz, R. C. et al. Recovery Plan for Laurel Wilt of Avocado, caused by Raffaelea lauricola. Plant Health Progress. 18, 51–77, https://doi.org/10.1094/PHP-12-16-0070-RP (2017).

    • Article
    • Google Scholar
  • 39.

    Cook, S. M., Khan, Z. R. & Pickett, J. A. The use of push-pull strategies in integrated pest management. Annu. Rev. Entomol. 52, 375–400 (2007).

  • 40.

    Bentz, A. B. J., Kegley, S., Gibson, K. & Thier, R. A test of high-dose Verbenone for stand-level protection of lodgepole and whitebark pine from mountain pine beetle (Coleoptera: Curculionidae: Scolytinae) attacks. 98, 1614–1621 (2005).

    • CAS
    • Google Scholar
  • 41.

    Borden, J. H., Birmingham, A. L. & Burleigh, J. S. Evaluation of the push-pull tactic against the mountain pine beetle using verbenone and non-host volatiles in combination with pheromone-baited trees. For. Chron. 82, 579–590 (2006).

    • Article
    • Google Scholar
  • 42.

    Gillette, N. E. et al. Verbenone-releasing flakes protect individual Pinus contorta trees from attack by Dendroctonus ponderosae and Dendroctonus valens (Coleoptera: Curculionidae, Scolytinae). Agric. For. Entomol. 8, 243–251 (2006).

    • Article
    • Google Scholar
  • 43.

    Burbano, E. G. et al. Efficacy of traps, lures, and repellents for Xylosandrus compactus (Coleoptera: Curculionidae) and other ambrosia beetles on Coffea arabica plantations and Acacia koa nurseries in Hawaii. Environ. Entomol. 41, 133–140 (2012).

  • 44.

    Fettig, C. Efficacy of SPLAT Verb for protecting individual Pinus contorta, Pinus ponderosa, and Pinus lambertiana from mortality attributed to dendroctonus ponderosae. CBC News. 113, 11–20 (2017).

    • Google Scholar
  • 45.

    Holopainen, J. K. & Gershenzon, J. Multiple stress factors and the emission of plant VOCs. Trends Plant Sci. 15, 176–184 (2010).

  • 46.

    Byers, J. A., Anderbrant, O. & Löqvist, J. Effective attraction radius. J. Chem. Ecol. 15, 749–765 (1989).

  • 47.

    Seo, M., Martini, X., Rivera, M. J. & Stelinski, L. L. Flight Capacities and Diurnal flight patterns of the ambrosia beetles, Xyleborus glabratus and Monarthrum mali (Coleoptera: Curculionidae). Environ. Entomol. 46, 729–734 (2017).

  • 48.

    Ries, L., Fletcher, R. J., Battin, J. & Sisk, T. D. Ecological responses to habitat edges: mechanisms, models, and variability explained. Annu. Rev. Ecol. Evol. Syst. 35, 491–522 (2004).

    • Article
    • Google Scholar
  • 49.

    Conlong, D. E., Webster, T. & Wilkinson, D. Ten years of area-wide integrated pest management with a push-pull component against Eldana Saccharina (Lepidoptera: Pyralidae) in sugarcane in the midlands north region of Kwazulu-Natal. Proc. S. Afr. Sug. Technol. Aes. 89, 70–84 (2016).

    • Google Scholar
  • 50.

    Werle, C. T. et al. Integrating repellent and attractant semiochemicals into a push-pull strategy for ambrosia beetles (Coleoptera: Curculionidae). J. Appl. Entomol. 9, 83 (2018).

    • Google Scholar

  • Source: Ecology - nature.com

    Early high rates and disparity in the evolution of ichthyosaurs

    Oxygen lost and found