in

Experimental evidence for effects of sexual selection on condition-dependent mutation rates

  • 1.

    Andersson, M. Sexual Selection (Princeton Univ. Press, 1994).

  • 2.

    Whitlock, M. C. & Agrawal, A. F. Purging the genome with sexual selection: reducing mutation load through selection on males. Evolution 63, 569–582 (2009).

  • 3.

    Janicke, T., Ritchie, M. G., Morrow, E. H. & Marie-Orleach, L. Sexual selection predicts species richness across the animal kingdom. Proc. R. Soc. B 285, 20180173 (2018).

    • Article
    • Google Scholar
  • 4.

    Arnqvist, G., Edvardsson, M., Friberg, U. & Nilsson, T. Sexual conflict promotes speciation in insects. Proc. Natl Acad. Sci. USA 97, 10460–10464 (2000).

  • 5.

    Martins, M. J. F., Puckett, T. M., Lockwood, R., Swaddle, J. P. & Hunt, G. High male sexual investment as a driver of extinction in fossil ostracods. Nature 556, 366–369 (2018).

  • 6.

    Agrawal, A. F. Sexual selection and the maintenance of sexual reproduction. Nature 411, 692–695 (2001).

  • 7.

    Jennions, M. D. & Petrie, M. Why do females mate multiply? A review of the genetic benefits. Biol. Rev. 75, 21–64 (2007).

    • Article
    • Google Scholar
  • 8.

    Bonduriansky, R. The evolution of male mate choice in insects: a synthesis of ideas and evidence. Biol. Rev. Camb. Philos. Soc. 76, 305–339 (2001).

  • 9.

    Arnqvist, G. & Nilsson, T. The evolution of polyandry: multiple mating and female fitness in insects. Anim. Behav. 60, 145–164 (2000).

  • 10.

    Tomkins, J. L., Radwan, J., Kotiaho, J. S. & Tregenza, T. Genic capture and resolving the lek paradox. Trends Ecol. Evol. 19, 323–328 (2004).

    • Article
    • Google Scholar
  • 11.

    Rowe, L. & Houle, D. The lek paradox and the capture of genetic variance by condition-dependent traits. Proc. R. Soc. Lond. B 263, 1415–1421 (1996).

    • Article
    • Google Scholar
  • 12.

    Hunt, J., Bussière, L. F., Jennions, M. D. & Brooks, R. What is genetic quality? Trends Ecol. Evol. 19, 329–333 (2004).

    • Article
    • Google Scholar
  • 13.

    Pomiankowski, A. & Møller, A. P. A resolution of the lek paradox. Proc. R. Soc. Lond. B 260, 21–29 (1995).

    • Article
    • Google Scholar
  • 14.

    Kotiaho, J. S., LeBas, N. R., Puurtinen, M. & Tomkins, J. L. On the resolution of the lek paradox. Trends Ecol. Evol. 23, 1–3 (2008).

    • Article
    • Google Scholar
  • 15.

    Turelli, M. Heritable genetic variation via mutation-selection balance: Lerch’s zeta meets the abdominal bristle. Theor. Popul. Biol. 25, 138–193 (1984).

  • 16.

    Walsh, B. & Blows, M. W. Abundant genetic variation + strong selection = multivariate genetic constraints: a geometric view of adaptation. Annu. Rev. Ecol. Evol. Syst. 40, 41–59 (2009).

    • Article
    • Google Scholar
  • 17.

    Andersson, M. & Simmons, L. W. Sexual selection and mate choice. Trends Ecol. Evol. 21, 296–302 (2006).

    • Article
    • Google Scholar
  • 18.

    Ellegren, H. Characteristics, causes and evolutionary consequences of male-biased mutation. Proc. R. Soc. Lond. B 274, 1–10 (2007).

  • 19.

    Sayres, M. A. W. & Makova, K. D. Genome analyses substantiate male mutation bias in many species. BioEssays 33, 938–945 (2011).

  • 20.

    Haldane, J. B. S. The rate of spontaneous mutation of a human gene. J. Genet. 31, 317 (1935).

    • Article
    • Google Scholar
  • 21.

    Ségurel, L., Wyman, M. J. & Przeworski, M. Determinants of mutation rate variation in the human germline. Annu. Rev. Genomics Hum. Genet. 15, 47–70 (2014).

  • 22.

    Grégoire, M.-C. et al. Male-driven de novo mutations in haploid germ cells. Mol. Hum. Reprod. 19, 495–499 (2013).

  • 23.

    Clutton-Brock, T. H. & Parker, G. A. Potential reproductive rates and the operation of sexual selection. Q. Rev. Biol. 67, 437–456 (1992).

    • Article
    • Google Scholar
  • 24.

    Schärer, L., Rowe, L. & Arnqvist, G. Anisogamy, chance and the evolution of sex roles. Trends Ecol. Evol. 27, 260–264 (2012).

    • Article
    • Google Scholar
  • 25.

    Blumenstiel, J. P. Sperm competition can drive a male-biased mutation rate. J. Theor. Biol. 249, 624–632 (2007).

  • 26.

    Møller, A. & Cuervo, J. Sexual selection, germline mutation rate and sperm competition. BMC Evol. Biol. 3, 6 (2003).

  • 27.

    Petrie, M. & Roberts, G. Sexual selection and the evolution of evolvability. Heredity 98, 198–205 (2007).

  • 28.

    Cotton, S. Condition‐dependent mutation rates and sexual selection. J. Evol. Biol. 22, 899–906 (2009).

  • 29.

    Maklakov, A. A. & Immler, S. The expensive germline and the evolution of ageing. Curr. Biol. 26, R577–R586 (2016).

  • 30.

    Aitken, R. J. & De Iuliis, G. N. On the possible origins of DNA damage in human spermatozoa. Mol. Hum. Reprod. 16, 3–13 (2010).

  • 31.

    Dowling, D. K. & Simmons, L. W. Reactive oxygen species as universal constraints in life-history evolution. Proc. R. Soc. B 276, 1737–1745 (2009).

  • 32.

    Friedberg, E. C., Walker, G. C., Siede, W. & Wood, R. D. DNA Repair and Mutagenesis (American Society for Microbiology Press, 2005).

  • 33.

    Sniegowski, P. D., Gerrish, P. J., Johnson, T. & Shaver, A. The evolution of mutation rates: separating causes from consequences. BioEssays 22, 1057–1066 (2000).

  • 34.

    Immler, S. & Otto, S. P. The evolutionary consequences of selection at the haploid gametic stage. Am. Nat. 192, 241–249 (2018).

    • Article
    • Google Scholar
  • 35.

    Ball, B. A. Oxidative stress, osmotic stress and apoptosis: impacts on sperm function and preservation in the horse. Anim. Reprod. Sci. 107, 257–267 (2008).

  • 36.

    Agrawal, A. F. & Wang, A. D. Increased transmission of mutations by low-condition females: evidence for condition-dependent DNA repair. PLoS Biol. 6, e30 (2008).

  • 37.

    Sharp, N. P. & Agrawal, A. F. Evidence for elevated mutation rates in low-quality genotypes. Proc. Natl Acad. Sci. USA 109, 6142–6146 (2012).

    • Article
    • Google Scholar
  • 38.

    Berger, D., Stångberg, J., Grieshop, K., Martinossi-Allibert, I. & Arnqvist, G. Temperature effects on life-history trade-offs, germline maintenance and mutation rate under simulated climate warming. Proc. R. Soc. B 284, 20171721 (2017).

    • Article
    • Google Scholar
  • 39.

    Zahavi, A. Mate selection—a selection for a handicap. J. Theor. Biol. 53, 205–214 (1975).

  • 40.

    Prokop, Z. M., Michalczyk, Ł., Drobniak, S. M., Herdegen, M. & Radwan, J. Meta-analysis suggests choosy females get sexy sons more than “good genes”: meta-analysis of female choice benefits. Evolution 66, 2665–2673 (2012).

    • Article
    • Google Scholar
  • 41.

    Weatherhead, P. J. & Robertson, R. J. Offspring quality and the polygyny threshold: ‘The Sexy Son Hypothesis’. Am. Nat. 113, 201–208 (1979).

    • Article
    • Google Scholar
  • 42.

    Agrawal, A. F. & Whitlock, M. C. Mutation load: the fitness of individuals in populations where deleterious alleles are abundant. Annu. Rev. Ecol. Evol. Syst. 43, 115–135 (2012).

    • Article
    • Google Scholar
  • 43.

    Agrawal, A. F. Genetic loads under fitness-dependent mutation rates: load with fitness-dependent mutation rates. J. Evol. Biol. 15, 1004–1010 (2002).

    • Article
    • Google Scholar
  • 44.

    Lynch, M. Mutation and human exceptionalism: our future genetic load. Genetics 202, 869–875 (2016).

  • 45.

    Lynch, M. et al. Perspective: spontaneous deleterious mutation. Evolution 53, 645–663 (1999).

    • Article
    • Google Scholar
  • 46.

    Ramm, S. A., Schärer, L., Ehmcke, J. & Wistuba, J. Sperm competition and the evolution of spermatogenesis. Mol. Hum. Reprod. 20, 1169–1179 (2014).

  • 47.

    González-Marín, C., Gosálvez, J. & Roy, R. Types, causes, detection and repair of DNA fragmentation in animal and human sperm cells. Int. J. Mol. Sci. 13, 14026–14052 (2012).

  • 48.

    Martinossi‐Allibert, I., Thilliez, E., Arnqvist, G. & Berger, D. Sexual selection, environmental robustness and evolutionary demography of maladapted populations: a test using experimental evolution in seed beetles. Evol. Appl. 12, 1487–1502 (2019).

    • Article
    • Google Scholar
  • 49.

    Baur, J., Nsanzimana, Jd’Amour & Berger, D. Sexual selection and the evolution of male and female cognition: a test using experimental evolution in seed beetles*. Evolution 73, 2390–2400 (2019).

    • Article
    • Google Scholar
  • 50.

    Eady, P. E. Why do male Callosobruchus maculatus beetles inseminate so many sperm? Behav. Ecol. Sociobiol. 36, 25–32 (1995).

    • Article
    • Google Scholar
  • 51.

    Yamane, T., Goenaga, J., Rönn, J. L. & Arnqvist, G. Male seminal fluid substances affect sperm competition success and female reproductive behavior in a seed beetle. PLoS ONE 10, e0123770 (2015).

  • 52.

    Berger, D. et al. Intralocus sexual conflict and the tragedy of the commons in seed beetles. Am. Nat. 188, E98–E112 (2016).

    • Article
    • Google Scholar
  • 53.

    von Schantz, T., Bensch, S., Grahn, M., Hasselquist, D. & Wittzell, H. Good genes, oxidative stress and condition-dependent sexual signals. Proc. R. Soc. B 266, 1–12 (1999).

    • Article
    • Google Scholar
  • 54.

    Shabalina, S. A., Yampolsky, L. Y. & Kondrashov, A. S. Rapid decline of fitness in panmictic populations of Drosophila melanogaster maintained under relaxed natural selection. Proc. Natl Acad. Sci. USA 94, 13034–13039 (1997).

  • 55.

    Simmons, L. W. Resource allocation trade-off between sperm quality and immunity in the field cricket, Teleogryllus oceanicus. Behav. Ecol. 23, 168–173 (2012).

    • Article
    • Google Scholar
  • 56.

    Evans, J. P. & Simmons, L. W. The genetic basis of traits regulating sperm competition and polyandry: can selection favour the evolution of good- and sexy-sperm? Genetica 134, 5–19 (2007).

    • PubMed
    • Google Scholar
  • 57.

    Hosken, D. J., Garner, Tw. J., Tregenza, T., Wedell, N. & Ward, P. I. Superior sperm competitors sire higher-quality young. Proc. R. Soc. Lond. B 270, 1933–1938 (2003).

  • 58.

    Berger, D. et al. Sexually antagonistic selection on genetic variation underlying both male and female same-sex sexual behavior. BMC Evol. Biol. 16, 88 (2016).

  • 59.

    Immonen, E., Rönn, J., Watson, C., Berger, D. & Arnqvist, G. Complex mitonuclear interactions and metabolic costs of mating in male seed beetles. J. Evol. Biol. 29, 360–370 (2016).

  • 60.

    Sharp, N. P. & Agrawal, A. F. Low genetic quality alters key dimensions of the mutational spectrum. PLoS Biol. 14, e1002419 (2016).

  • 61.

    Silva, W. T. A. F. et al. The effects of male social environment on sperm phenotype and genome integrity. J. Evol. Biol. 32, 535–544 (2019).

  • 62.

    delBarco-Trillo, Javier et al. A cost for high levels of sperm competition in rodents: increased sperm DNA fragmentation. Proc. R. Soc. B 283, 20152708 (2016).

  • 63.

    Johnson, T. & Barton, N. Theoretical models of selection and mutation on quantitative traits. Phil. Trans. R. Soc. B 360, 1411–1425 (2005).

  • 64.

    Kimura, M. The Neutral Theory of Molecular Evolution (Cambridge Univ. Press, 1983).

  • 65.

    Kondrashov, A. S. Selection against harmful mutations in large sexual and asexual populations. Genet. Res. 40, 325 (1982).

  • 66.

    Medawar, P. B. An Unsolved Problem of Biology (H. K. Lewis, 1952).

  • 67.

    Baer, C. F. Does mutation rate depend on itself. PLoS Biol. 6, e52 (2008).

  • 68.

    Beck, C. W. & Promislow, D. E. L. Evolution of female preference for younger males. PLoS ONE 2, e939 (2007).

  • 69.

    Ruan, Y., Wang, H., Chen, B., Wen, H. & Wu, C.-I. Mutations beget more mutations—rapid evolution of mutation rate in response to the risk of runaway accumulation. Mol. Biol. Evol. https://doi.org/10.1093/molbev/msz283 (2019).

  • 70.

    Parker, G. A. & Pizzari, T. Sperm competition and ejaculate economics. Biol. Rev. 85, 897–934 (2010).

    • Article
    • Google Scholar
  • 71.

    Haldane, J. B. S. The effect of variation of fitness. Am. Nat. 71, 337–349 (1937).

    • Article
    • Google Scholar
  • 72.

    Kimura, M. On the evolutionary adjustment of spontaneous mutation rates*. Genet. Res. 9, 23–34 (1967).

    • Article
    • Google Scholar
  • 73.

    Kokko, H. Fisherian and “good genes” benefits of mate choice: how (not) to distinguish between them. Ecol. Lett. 4, 322–326 (2001).

    • Article
    • Google Scholar
  • 74.

    Bonduriansky, R. & Day, T. The evolution of static allometry in sexually selected traits. Evolution 57, 2450–2458 (2003).

    • Article
    • Google Scholar
  • 75.

    Shaw, F. H. & Baer, C. F. Fitness-dependent mutation rates in finite populations. J. Evol. Biol. 24, 1677–1684 (2011).

  • 76.

    Lynch, M. et al. Genetic drift, selection and the evolution of the mutation rate. Nat. Rev. Genet. 17, 704–714 (2016).

  • 77.

    Arnheim, N. & Calabrese, P. Germline stem cell competition, mutation hot spots, genetic disorders, and older fathers. Annu. Rev. Genomics Hum. Genet. 17, 219–243 (2016).

  • 78.

    Fox, C. W. Multiple mating, lifetime fecundity and female mortality of the bruchid beetle, Callosobruchus maculatus (Coleoptera: Bruchidae). Funct. Ecol. 7, 203–208 (1993).

    • Article
    • Google Scholar
  • 79.

    Crudgington, H. S. & Siva-Jothy, M. T. Genital damage, kicking and early death. Nature 407, 855–856 (2000).

  • 80.

    Hotzy, C. & Arnqvist, G. Sperm competition favors harmful males in seed beetles. Curr. Biol. 19, 404–407 (2009).

  • 81.

    Gay, L., Hosken, D. J., Vasudev, R., Tregenza, T. & Eady, P. E. Sperm competition and maternal effects differentially influence testis and sperm size in Callosobruchus maculatus. J. Evol. Biol. 22, 1143–1150 (2009).

  • 82.

    Berger, D. et al. Intralocus sexual conflict and environmental stress. Evolution 68, 2184–2196 (2014).

    • Article
    • Google Scholar
  • 83.

    Grieshop, K. & Arnqvist, G. Sex-specific dominance reversal of genetic variation for fitness. PLoS Biol. 16, e2006810 (2018).

  • 84.

    Baur, J., d’Amour, J. & Berger, D. Sexual selection and the evolution of male and female cognition: a test using experimental evolution in seed beetles. Evolution 73, 2390–2400 (2019).

    • Article
    • Google Scholar
  • 85.

    Daly, M. J. Death by protein damage in irradiated cells. DNA Repair 11, 12–21 (2012).

  • 86.

    Supek, F. & Lehner, B. Differential DNA mismatch repair underlies mutation rate variation across the human genome. Nature 521, 81–84 (2015).

  • 87.

    Maklakov, A. A., Immler, S., Lovlie, H., Flis, I. & Friberg, U. The effect of sexual harassment on lethal mutation rate in female Drosophila melanogaster. Proc. R. Soc. B 280, 20121874 (2012).

    • Article
    • Google Scholar
  • 88.

    Svetec, N., Cridland, J. M., Zhao, L. & Begun, D. J. The adaptive significance of natural genetic variation in the DNA damage response of Drosophila melanogaster. PLoS Genet. 12, e1005869 (2016).

  • 89.

    Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J. Stat. Softw. 33, 1–22 (2010).

    • Article
    • Google Scholar
  • 90.

    Therneau, T. M. coxme: Mixed Effects Cox Models. R package version 2.2-14 (2019); https://CRAN.R-project.org/package=coxme


  • Source: Ecology - nature.com

    Native plants for greening Mediterranean agroecosystems

    Scientists quantify how wave power drives coastal erosion