in

Exposure to UV radiance predicts repeated evolution of concealed black skin in birds

  • 1.

    Darwin, C. R. The Descent of Man, and Selection in Relation to Sex. (John Murray, 1871).

  • 2.

    Newton, I. Opticks. (William Innys at the West-End of St. Paul’s, London, 1730).

  • 3.

    Dale, J., Dey, C. J., Delhey, K., Kempenaers, B. & Valcu, M. The effects of life history and sexual selection on male and female plumage colouration. Nature 527, 367–370 (2015).

  • 4.

    McCoy, D. E., Feo, T., Harvey, T. A. & Prum, R. O. Structural absorption by barbule microstructures of super black bird of paradise feathers. Nat. Commun. 9, 1 (2018).

  • 5.

    Auber, L. The distribution of structural colours and unusual pigments in the class Aves. Ibis 99, 463–476 (1957).

    • Article
    • Google Scholar
  • 6.

    Prum, R. O. & Torres, R. Structural colouration of avian skin: convergent evolution of coherently scattering dermal collagen arrays. J. Exp. Biol. 206, 2409–2429 (2003).

  • 7.

    Bortolotti, G. R. in Bird Colouration. Vol. 2 (eds Hill, G. E. & McGraw, K. E.) 3–35 (Harvard University Press, Cambridge, 2006).

  • 8.

    Langmore, N. E., Hunt, S. & Kilner, R. M. Escalation of a coevolutionary arms race through host rejection of brood parasitic young. Nature 422, 157–160 (2003).

  • 9.

    Jourdie, V., Moureau, B., Bennett, A. T. D. & Heeb, P. Ultraviolet reflectance by the skin of nestlings. Nature 431, 262 (2004).

  • 10.

    Iverson, E. N. K. & Karubian, J. The role of bare parts in avian signaling. Auk 134, 587–611 (2017).

  • 11.

    Dorshorst, B. et al. A complex genomic rearrangement involving the Endothelin 3 locus causes dermal hyperpigmentation in the chicken. PLoS Genet. 7, e1002412 (2011).

  • 12.

    Ohmart, R. D. & Lasiewksi, R. C. Roadrunners: energy conservation by hypothermia and absorption of sunlight. Science 172, 67–69 (1971).

  • 13.

    Downs, C. T., Wirminghaus, J. O. & Lawes, M. J. Anatomical and nutritional adaptations of the Speckled Mousebird (Colius striatus). Auk 117, 791–794 (2000).

    • Article
    • Google Scholar
  • 14.

    D’Alba, L. & Shawkey, M. D. Melanosomes: biogenesis, properties, and evolution of an ancient organelle. Physiol. Rev. 99, 1–19 (2018).

  • 15.

    Walsberg, G. E. Consequences of skin colour and fur properties for solar heat gain and ultraviolet irradiance in two mammals. J. Comp. Phys. B 158, 213–221 (1988).

  • 16.

    Jablonski, N. G. & Chaplin, G. Human skin pigmentation as an adaptation to UV radiation. PNAS 107, 8692–8968 (2010).

    • Article
    • Google Scholar
  • 17.

    Mackintosh, J. A. The antimicrobial properties of melanocytes, melanosomes and melanin and the evolution of black skin. J. Theor. Biol. 212, 101–113 (2001).

  • 18.

    Franco-Belussi, L., Sköld, H. N. & de Oliveira, C. Internal pigment cells respond to external UV radiation in frogs. J. Exp. Biol. 219, 1378–1383 (2016).

  • 19.

    Reguera, S., Zamora-Camacho, F. J. & Moreno-Rueda G. The lizard Psammodromus algirus (Squamata: Lacertidae) is darker at high altitudes. Biol. J. Linn. Soc. 112, 132–141 (2014).

    • Article
    • Google Scholar
  • 20.

    Galván, I. & Solano, F. Bird integumentary melanins: biosynthesis, forms, function and evolution. Int. J. Mol. Sci. 17, 520 (2016).

  • 21.

    Jablonski, N. G. The evolution of human skin and skin colour. Annu. Rev. Anthropol. 33, 585–623 (2004).

    • Article
    • Google Scholar
  • 22.

    Hill, H. Z. The function of melanin or six blind people examine an elephant. Bioessays 14, 49–56 (1992).

  • 23.

    Ward, J. M., Blount, J., Ruxton, G. & Houston, D. C. The adaptive significance of dark plumage for birds in desert environments. Ardea 90, 311–323 (2002).

    • Google Scholar
  • 24.

    Galvan, I. & Solano, F. Bird integumentary melanins: biosynthesis, forms, function and evolution. Int. J. Mol. Sci. 17, 520 (2016).

  • 25.

    Burtt, E. H. J. in The Behavioural Significance of Colour. (ed. Burtt, E. H. Jr.) (Garland STPM Press, 2018).

  • 26.

    Wolf, B. O. & Walsberg, G. E. The role of plumage in heat transfer processes of birds. Am. Zool. 40, 575–584 (2000).

    • Google Scholar
  • 27.

    Geen, M. R. & Johnston, G. R. Colouration affects heating and cooling in three colour morphs of the Australian bluetongue lizard, Tiliqua scincoides. J. Therm. Biol. 43, 54–60 (2014).

  • 28.

    Medina, I. et al. Reflection of near-infrared light convers thermal protection in birds. Nat. Commun. 9, 3610 (2018).

  • 29.

    Burtt, E. H. J. & Ichida, J. M. Gloger’s rule, feather-degrading bacteria, and colour variation among song sparrows. Condor 106, 681–686 (2004).

    • Article
    • Google Scholar
  • 30.

    Goldstein, G. et al. Bacterial degradation of black and white feathers. Auk 121, 656–659 (2004).

    • Article
    • Google Scholar
  • 31.

    Jacquin, L., Lenouvel, P., Haussy, C., Ducatez, S. & Gasparini, J. Melanin-based colouration is related to parasite intensity and cellular immune response in an urban free living bird: the feral pigeon. J. Avian Biol. 42, 11–15 (2011).

    • Article
    • Google Scholar
  • 32.

    Côte, J. et al. Melanin-based colouration and host-parasite interactions under global change. Proc. Biol. Sci. 285, 20180285 (2018).

  • 33.

    Theron, E. et al. The molecular basis of an avian plumage polymorphism in the wild: a melanocortin-1-receptor point mutation is perfectly associated with the melanic plumage morph of the bananaquit, Coereba flaveola. Curr. Biol. 11, 550–557 (2001).

  • 34.

    San-Jose, L. M. et al. Effects of the MC1R gene on sexual dimorphism in melanin-based colourations. Mol. Ecol. 24, 2794–2808 (2015).

  • 35.

    Gloger, C. W. L. Abänderungsweise der einzelnen, einger Veränderung durch das Klima unterworfenen Farben. In Das Abändern der Vögel durch Einfluss des Klimas. 11–24 (1833).

  • 36.

    Delhey, K. A review of Gloger’s rule an ecogeographical rule of colour: definitions, interpretations and evidence. Biol. Rev. 94, 1294–1316 (2019).

  • 37.

    Hamada, Y., Suryobroto, B., Groto, S. & Malaivijitnond, S. Morphological and body colour variation in Thai Macaca fascicularis north and south of the Isthmus of Kra. Int. J. Primatol. 29, 1271–1294 (2008).

    • Article
    • Google Scholar
  • 38.

    Santana, S. E., Alfaro, J. L. & Alfaro, M. E. Adapative evolution of facial colour patterns in Neotropical primates. Proc. R. Soc. B Biol. Sci. 279, 2204–2211 (2012).

    • Article
    • Google Scholar
  • 39.

    Lucas, A. M., Stettenheim, P. R. Avian Anatomy: Integument, Part 1. (Department of Agriculture, Washington, D.C., 1972).

  • 40.

    Chaplin, G. Geographic distribution of environmental factors influencing human skin coloration. Am. J. Phys. Anthropol. 125, 292–302 (2004).

  • 41.

    Hill, G. E. & McGraw, K. E. ed. Bird Colouration, Volume 1. 3–35 (Harvard University Press, Cambridge, 2006).

  • 42.

    Clements, J. F. et al. The eBird/Clements Checklist of Birds of the World: v2018. (2018).

  • 43.

    Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).

  • 44.

    Hackett, S. J. et al. Phylogenomic study of birds reveals their evolutionary history. Science 320, 1763–1768 (2008).

  • 45.

    Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2018).

  • 46.

    Revell, L. J. Phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).

    • Article
    • Google Scholar
  • 47.

    Revell, L. J. Two new graphical methods for mapping trait evolution on phylogenies. Methods Ecol. Evol. 4, 754–759 (2013).

    • Article
    • Google Scholar
  • 48.

    Fritz, S. A. & Purvis, A. Selectivity in mammalian extinction risk and threat types: a new measure of phylogenetic signal strength in binary traits. Conserv. Biol. 24, 1042–1051 (2010).

  • 49.

    Orme, D. et al. Caper: comparative analyses of phylogenetics and evolution in R. Methods Ecol. Evol. 3, 145–151 (2013).

    • Article
    • Google Scholar
  • 50.

    Ho, L. S. T. & Ane, C. A linear-time algorithm for Gaussian an non-Gaussian trait evolution models. Syst. Biol. 63, 397–408 (2014).

  • 51.

    Ives, A. R. R2s for correlated data: phylogenetic models, LMMs, and GLMMs. Syst. Biol. 68, 234–251 (2019).

  • 52.

    Del Hoyo, J., Elliot, A., Sargatal, J., Christie, D. A. & de Juana, E. eds Handbook of the Birds of the World Alive. (Lynx Edicions, 2016).

  • 53.

    Sayol, F., Downing, P. A., Iwaniuk, A., Maspons, J. & Sol, D. Predictable evolution towards larger brains in birds colonizing oceanic islands. Nat. Commun. 9, 2820 (2018).

  • 54.

    Beckmann, M. et al. gIUV: a global UV-B radiation data set for macroecological studies. Methods Ecol. Evol. 5, 372–383 (2014).

    • Article
    • Google Scholar
  • 55.

    The IUCN Red List of Threatened Species. Version 2018-2. http://www.iucnredlist.org (2019).

  • 56.

    Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modelling of species geographic distributions. Ecol. Model. 190, 231–259 (2006).

    • Article
    • Google Scholar
  • 57.

    GBIF: The Global Biodiversity Information Facility. Gbif.org. https://www.gbif.org (2019).

  • 58.

    Fick, S. E. & Hijmans, R. J. Worldclim2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

    • Article
    • Google Scholar
  • 59.

    Pimm, S. L. et al. The biodiversity of species and their rates of extinction, distribution, and protection. Science 344, 1246752 (2014).

  • 60.

    Phillips, S. J. A brief tutorial on Maxent. AT&T Res. 190, 231–259 (2006).

  • 61.

    Original S code by Richard A. Becker, Allan R. Wilks. R version by Ray Brownrigg. Enhancements by Thomas P Minka and Alex Deckmyn. maps: Draw Geographical Maps. R package version 3.3.0 (2018).


  • Source: Ecology - nature.com

    Fruitbody chemistry underlies the structure of endofungal bacterial communities across fungal guilds and phylogenetic groups

    MIT student leaders go virtual with global startup competitions