in

Factors controlling accumulation of organic carbon in a rift-lake, Oligocene Vietnam

  • 1.

    Katz, B. J. Controlling factors on source rock development—A review of productivity, preservation, and sedimentation rate. Depos. Org. Sediments Model. Mech. Consequences SEPM Spec. Publ. 82, 7–16 (2005).

    CAS  Google Scholar 

  • 2.

    Tyson, R. V. The, “productivity versus preservation” controversy: Cause, flaws, and resolution. Depos. Org. Sediments Model. Mech. Consequences SEPM Spec. Publ. 82, 17–33 (2005).

    CAS  Google Scholar 

  • 3.

    Harris, N. B., Freeman, K. H., Pancost, R. D., White, T. S. & Mitchell, G. D. The character and origin of lacustrine source rocks in the Lower Cretaceous synrift section, Congo Basin, west Africa. Am. Assoc. Pet. Geol. Bull. 88, 1163–1184 (2004).

    CAS  Google Scholar 

  • 4.

    Talbot, M. R., Filippi, M. L., Jensen, N. B. & Tiercelin, J.-J. An abrupt change in the African monsoon at the end of the Younger Dryas. Geochem. Geophys. Geosyst. 8(3), Q03005. https://doi.org/10.1029/2006GC001465 (2007).

    ADS  Article  Google Scholar 

  • 5.

    Scholz, C. A. et al. Scientific drilling in the Great Rift Valley: The 2005 Lake Malawi Scientific Drilling Project—An overview of the past 145,000 years of climate variability in Southern Hemisphere East Africa. Palaeogeogr. Palaeoclimatol. Palaeoecol. 303, 3–19 (2011).

    Google Scholar 

  • 6.

    Ellis, G. S., Katz, B. J., Scholz, C. A. & Swart, P. K. Organic sedimentation in modern lacustrine systems: A case study from Lake Malawi, East Africa. In Paying Attention to Mudrocks: Priceless! (eds. Larsen, D. et al.) 515, (Geological Society of America, 2015).

  • 7.

    Ivory, S. J. et al. East African weathering dynamics controlled by vegetation-climate feedbacks. Geology 45, 823–826 (2017).

    ADS  Google Scholar 

  • 8.

    Lambiase, J. & Morley, C. Hydrocarbons in rift basins: The role of stratigraphy. Philos. Trans. R. Soc. London. Ser. A Math. Phys. Eng. Sci. 357, 877–900 (1999).

    ADS  Google Scholar 

  • 9.

    Huc, A. Y., Le Fournier, J., Vandenbroucke, M. & Bessereau, G. Northern Lake Tanganyika—An example of organic sedimentation in an anoxic rift lake. In Lacustrine Basin Exploration: Case Studies and Modern Analogs (ed. Katz B. J.) 50, 169–185 (American Association of Petroleum Geologists, 1990).

  • 10.

    Katz, B. J. A survey of rift basin source rocks. Geol. Soc. Lond. Spec. Publ. 80, 213 (1995).

    ADS  Google Scholar 

  • 11.

    Lyons, R. P., Scholz, C. A., Buoniconti, M. R. & Martin, M. R. Late Quaternary stratigraphic analysis of the Lake Malawi Rift, East Africa: An integration of drill-core and seismic-reflection data. Palaeogeogr. Palaeoclimatol. Palaeoecol. 303, 20–37 (2011).

    Google Scholar 

  • 12.

    Harris, N. B. & Tucker, G. E. Soils, slopes and source rocks: Application of a soil chemistry model to nutrient delivery to rift lakes. Sediment. Geol. 323, 31–42 (2015).

    ADS  CAS  Google Scholar 

  • 13.

    Talbot, M. R. & Johannessen, T. A high resolution palaeoclimatic record for the last 27,500 years in tropical West Africa from the carbon and nitrogen isotopic composition of lacustrine organic matter. Earth Planet. Sci. Lett. 110, 23–37 (1992).

    ADS  CAS  Google Scholar 

  • 14.

    Talbot, M. R. The origins of lacustrine oil source rocks: Evidence from the lakes of tropical Africa. Geol. Soc. Lond. Spec. Publ. 40, 29–43 (1988).

    ADS  Google Scholar 

  • 15.

    Petersen, H. I. et al. World-class Paleogene oil-prone source rocks from a cored lacustrine syn-rift succession, Bach Long Vi Island, Song Hong Basin, offshore northern Vietnam. J. Pet. Geol. 37, 373–389 (2014).

    CAS  Google Scholar 

  • 16.

    Nytoft, H. P. et al. Novel saturated hexacyclic C34 and C35 hopanes in lacustrine oils and source rocks. Org. Geochem. 87, 107–118 (2015).

    CAS  Google Scholar 

  • 17.

    Hovikoski, J. et al. Density-flow deposition in a fresh-water Lacustrine rift basin, Paleogene Bach Long Vi Graben, Vietnam. J. Sediment. Res. 86, 982–1007 (2016).

    ADS  CAS  Google Scholar 

  • 18.

    Fyhn, M. B. W. et al. Linking paleogene rifting and inversion in the Northern Song Hong and Beibuwan Basins, Vietnam, with left-lateral motion on the ailao shan-red river shear zone. Tectonics 37, 2559–2585 (2018).

    Google Scholar 

  • 19.

    Tuyen, N. T. Biostratigraphic report of the ENRECA‐3 well, Bach Long Vi Island prepared for the VPI‐ODA Project, Ho Chi Minh City, Vietnam Oil and Gas Group, Vietnam Petroleum Institute (VPI), Analysis Laboratory Center. (2013).

  • 20.

    Rizzi, M. et al. Hinterland setting and composition of an Oligocene deep rift-lake sequence, Gulf of Tonkin, Vietnam: Implications for petroleum source rock deposition. Mar. Pet. Geol. 111, 496–509 (2020).

    CAS  Google Scholar 

  • 21.

    Dymond, J., Suess, E. & Lyle, M. Barium in deep-sea sediment: A geochemical proxy for paleoproductivity. Paleoceanography 7, 163–181 (1992).

    ADS  Google Scholar 

  • 22.

    Föllmi, K. B. The phosphorus cycle, phosphogenesis and marine phosphate-rich deposits. Earth-Sci. Rev. 40, 55–124 (1996).

    ADS  Google Scholar 

  • 23.

    Kump, L. R. & Arthur, M. A. Interpreting carbon-isotope excursions: Carbonates and organic matter. Chem. Geol. 161, 181–198 (1999).

    ADS  CAS  Google Scholar 

  • 24.

    Tribovillard, N., Algeo, T. J., Lyons, T. & Riboulleau, A. Trace metals as paleoredox and paleoproductivity proxies: An update. Chem. Geol. 232, 12–32 (2006).

    ADS  CAS  Google Scholar 

  • 25.

    Boyle, J. F. Inorganic geochemical methods in palaeolimnology. In Tracking Environmental Change Using Lake Sediments (eds Last, W. M. & Smol, J. P.) 83–141 (Springer, Berlin, 2005).

    Google Scholar 

  • 26.

    Calvert, S. & Pedersen, T. F. Elemental proxies for palaeoclimatic and palaeoceanographic variability in marine sediments: Interpretation and application. Dev. Mar. Geol. 1, 567–644 (2007).

    Google Scholar 

  • 27.

    Wersin, P., Höhener, P., Giovanoli, R. & Stumm, W. Early diagenetic influences on iron transformations in a freshwater lake sediment. Chem. Geol. 90, 233–252 (1991).

    ADS  CAS  Google Scholar 

  • 28.

    Melles, M. et al. 2.8 million years of arctic climate change from lake El’gygytgyn, NE Russia. Science 337, 315 (2012).

    ADS  CAS  PubMed  Google Scholar 

  • 29.

    Naeher, S., Gilli, A., North, R. P., Hamann, Y. & Schubert, C. J. Tracing bottom water oxygenation with sedimentary Mn/Fe ratios in Lake Zurich, Switzerland. Chem. Geol. 352, 125–133 (2013).

    ADS  CAS  Google Scholar 

  • 30.

    Hatch, J. R. & Leventhal, J. S. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis Limestone, Wabaunsee County, Kansas, U.S.A.. Chem. Geol. 99, 65–82 (1992).

    ADS  CAS  Google Scholar 

  • 31.

    Rimmer, S. M. Geochemical paleoredox indicators in Devonian-Mississippian black shales, Central Appalachian Basin (USA). Chem. Geol. 206, 373–391 (2004).

    ADS  CAS  Google Scholar 

  • 32.

    Cuven, S., Francus, P. & Lamoureux, S. Mid to Late Holocene hydroclimatic and geochemical records from the varved sediments of East Lake, Cape Bounty, Canadian High Arctic. Quat. Sci. Rev. 30, 2651–2665 (2011).

    ADS  Google Scholar 

  • 33.

    Johnson, T. C., Brown, E. T. & Shi, J. Biogenic silica deposition in Lake Malawi, East Africa over the past 150,000 years. Palaeogeogr. Palaeoclimatol. Palaeoecol. 303, 103–109 (2011).

    Google Scholar 

  • 34.

    Lerman, A. Lakes: Chemistry, Geology, Physics (Springer, Berlin , 1978). https://doi.org/10.1007/978-1-4757-1152-3.

    Google Scholar 

  • 35.

    Jia, J., Liu, Z., Bechtel, A., Strobl, S. A. I. & Sun, P. Tectonic and climate control of oil shale deposition in the Upper Cretaceous Qingshankou Formation (Songliao Basin, NE China). Int. J. Earth Sci. 102, 1717–1734 (2013).

    CAS  Google Scholar 

  • 36.

    Meng, Q., Liu, Z., Bruch, A. A., Liu, R. & Hu, F. Palaeoclimatic evolution during Eocene and its influence on oil shale mineralisation, Fushun basin, China. J. Asian Earth Sci. 45, 95–105 (2012).

    ADS  Google Scholar 

  • 37.

    Didyk, B. M., Simoneit, B. R. T., Brassell, S. C. & Eglinton, G. Organic geochemical indicators of palaeoenvironmental conditions of sedimentation. Nature 272, 216–222 (1978).

    ADS  CAS  Google Scholar 

  • 38.

    Sinninghe Damsté, J. S., Ten Haven, H. L., de Leeuw, J. W. & Rullkotter, J. Pristane/phytane ratio as environmental indicator-Reply. Nature 333, 604 (1988).

    Google Scholar 

  • 39.

    Sinninghe Damsté, J. S. et al. Evidence for gammacerane as an indicator of water column stratification. Geochim. Cosmochim. Acta 59, 1895–1900 (1995).

    ADS  PubMed  Google Scholar 

  • 40.

    Irwin, H., Curtis, C. & Coleman, M. Isotopic evidence for source of diagenetic carbonates formed during burial of organic-rich sediments. Nature 269, 209–213 (1977).

    ADS  CAS  Google Scholar 

  • 41.

    Curtis, C. Mineralogical consequences of organic matter degradation in sediments: Inorganic/organic diagenesis. In Marine Clastic Sedimentology (eds Leggett, J. K. & Zuffa, G. G.) 108–123 (Springer, Berlin, 1987). https://doi.org/10.1007/978-94-009-3241-8_6.

    Google Scholar 

  • 42.

    Mozley, P. S. & Wersin, P. Isotopic composition of siderite as an indicator of depositional environment. Geology 20, 817–820 (1992).

    ADS  CAS  Google Scholar 

  • 43.

    Schieber, J., Southard, J. & Thaisen, K. Accretion of mudstone beds from migrating floccule ripples. Science 318, 1760 (2007).

    ADS  CAS  PubMed  Google Scholar 

  • 44.

    Macquaker, J. H. S. & Bohacs, K. M. On the accumulation of mud. Science 318, 1734 (2007).

    CAS  PubMed  Google Scholar 

  • 45.

    Föllmi, K. B. & Grimm, K. A. Doomed pioneers: Gravity-flow deposition and bioturbation in marine oxygen-deficient environments. Geology 18, 1069–1072 (1990).

    ADS  Google Scholar 

  • 46.

    Ingall, E. & Jahnke, R. Evidence for enhanced phosphorus regeneration from marine sediments overlain by oxygen depleted waters. Geochim. Cosmochim. Acta 58, 2571–2575 (1994).

    ADS  CAS  Google Scholar 

  • 47.

    Fyhn, M. B. W., Hoang, B. H., Anh, N. T., Hovikoski, J. & Cuong, T. D. Eocene-Oligocene syn-rift deposition in the northern Gulf of Tonkin, Vietnam. Mar. Pet. Geol. 111, 390–413 (2020).

    Google Scholar 

  • 48.

    Talling, P. J. On the triggers, resulting flow types and frequencies of subaqueous sediment density flows in different settings. Mar. Geol. 352, 155–182 (2014).

    ADS  Google Scholar 

  • 49.

    Morley, R. A review of the Cenozoic palaeoclimate history of Southeast Asia. In Biotic Evolution and Environmental Change in Southeast Asia (ed. Rosen, B.) 79–114 (Cambridge University Press, Cambridge, 2012).

    Google Scholar 

  • 50.

    Bohacs, K. M., Carroll, A. R., Neal, J. E. & Mankiewicz, P. J. Lake-Basin Type, Source Potentional, and Hydrocarbon Character:An Integrated Sequence-Stratigraphic-Geochemichal Framework. Lake basins through space and time: AAPG Studies in Geology 46, (American Association of Petroleum Geologists, 2000).

  • 51.

    Demaison, G. J. & Moore, G. T. Anoxic environments and oil source bed genesis. Org. Geochem. 2, 9–31 (1980).

    CAS  Google Scholar 

  • 52.

    Cohen, A. S. Facies relationships and sedimentation in large rift lakes and implications for hydrocarbon exploration: Examples from lakes Turkana and Tanganyika. Palaeogeogr. Palaeoclimatol. Palaeoecol. 70, 65–80 (1989).

    Google Scholar 

  • 53.

    Calvert, S. E., Bustin, R. M. & Pedersen, T. F. Lack of evidence for enhanced preservation of sedimentary organic matter in the oxygen minimum of the Gulf of California. Geology 20, 757–760 (1992).

    ADS  CAS  Google Scholar 

  • 54.

    Katz, B. J. Lacustrine basin hydrocarbon exploration -current thoughts. J. Palaeolimnol. 26, 161–179 (2001).

    ADS  Google Scholar 

  • 55.

    Bohacs, K. M. et al. Production, destruction, and dilution—The many paths to source-rock development. Spec. Publ. SEPM 82, 61–101 (2005).

    CAS  Google Scholar 

  • 56.

    Lehmann, M. F., Bernasconi, S. M., Barbieri, A. & McKenzie, J. A. Preservation of organic matter and alteration of its carbon and nitrogen isotope composition during simulated and in situ early sedimentary diagenesis. Geochim. Cosmochim. Acta 66, 3573–3584 (2002).

    ADS  CAS  Google Scholar 

  • 57.

    Harris, N. B. et al. Patterns of organic-carbon enrichment in a lacustrine source rock in relation to paleo-lake level, Congo Basin, West Africa. Depos. Org. Sediments Model. Mech. Consequences SEPM Spec. Publ. 82, 103–123 (2005).

    CAS  Google Scholar 

  • 58.

    Bojanowski, M. J. & Clarkson, E. N. K. Origin of siderite concretions in microenvironments of methanogenesis developed in a sulfate reduction zone: An exception or a rule?. J. Sediment. Res. 82, 585–598 (2012).

    ADS  CAS  Google Scholar 

  • 59.

    Berner, R. A. Early Diagenesis—A Theoretical Approach. Princeton Series in Geochemistry (Princeton University Press, Princeton, 1980). https://doi.org/10.1016/0037-0738(81)90046-4.

    Google Scholar 

  • 60.

    Raiswell, R. Chemical model for the origin of minor limestone-shale cycles by anaerobic methane oxidation. Geology 16, 641–644 (1988).

    ADS  CAS  Google Scholar 

  • 61.

    Canfield, D. E. Reactive iron in marine sediments. Geochim. Cosmochim. Acta 53, 619–632 (1989).

    ADS  CAS  PubMed  Google Scholar 

  • 62.

    Katsev, S., Sundby, B. & Mucci, A. Modeling vertical excursions of the redox boundary in sediments: Application to deep basins of the Arctic Ocean. Limnol. Oceanogr. 51, 1581–1593 (2006).

    ADS  CAS  Google Scholar 

  • 63.

    Esbensen, K. H., Guyot, D., Westad, F. & Houmoller, L. P. Multivariate Data Analysis—In Practice: An Introduction to Multivariate Data Analysis and Experimental Design. (Camo, 2002).

  • 64.

    Bish, D. L. & Post, J. E. Quantitative mineralogical analysis using the Rietveld full-pattern fitting method. Am. Mineral. 78, 932–940 (1993).

    CAS  Google Scholar 

  • 65.

    Hutton, A. C. Petrographic classification of oil shales. Int. J. Coal Geol. 8, 203–231 (1987).

    Google Scholar 

  • 66.

    Taylor, G. H. et al. Organic Petrology (Gebrüder Borntraeger, Berlin, 1998).

    Google Scholar 

  • 67.

    International, Committee for Coal and Organic Petrology. The new inertinite classification (ICCP System 1994). Fuel 80, 459–471 (2001).

    Google Scholar 

  • 68.

    Sýkorová, I. et al. Classification of huminite—ICCP System 1994. Int. J. Coal Geol. 62, 85–106 (2005).

    Google Scholar 

  • 69.

    Nytoft, H. P. et al. Biomarkers of Oligocene lacustrine source rocks, Beibuwan-Song Hong basin junction, offshore northern Vietnam. Mar. Pet. Geol. 114, 104196 (2020).

    CAS  Google Scholar 

  • 70.

    Radke, M., Willsch, H. & Welte, D. H. Preparative hydrocarbon group type determination by automated medium pressure liquid chromatography. Anal. Chem. 52, 406–411 (1980).

    CAS  Google Scholar 

  • 71.

    Craig, H. Isotopic standards for carbon and oxygen and correction factors for mass-spectrometric analysis of carbon dioxide. Geochim. Cosmochim. Acta 12, 133–149 (1957).

    ADS  CAS  Google Scholar 

  • 72.

    Friedman, I. & O’Neil, J. R. Compilation of stable isotope fractionation factors of geochemical interest. US Gov. Print. Off. 440, 1–11 (1977).

    Google Scholar 


  • Source: Ecology - nature.com

    The Arctic is burning like never before — and that’s bad news for climate change

    Gene expression during bacterivorous growth of a widespread marine heterotrophic flagellate