in

Factors influencing riverine utilization patterns in two sympatric macaques

  • 1.

    Helfield, J. M. & Naiman, R. J. Keystone interactions: salmon and bear in riparian forests of Alaska. Ecosystems 9, 167–180. https://doi.org/10.1007/s10021-004-0063-5 (2006).

    Article  Google Scholar 

  • 2.

    Smith, R. A. & Kennedy, M. L. Food habits of the racoon (Procyon lotor). J. Tenn. Acad. Sci. 62, 79–82 (1987).

    Google Scholar 

  • 3.

    Rees, E. E. et al. Assessing a landscape barrier using genetic simulation modelling: implications for raccoon rabies management. Prev. Vet. Med. 86, 107–123. https://doi.org/10.1016/j.prevetmed.2008.03.007 (2008).

    Article  PubMed  Google Scholar 

  • 4.

    Kempf, E. Patterns of water use in primates. Folia Primatol. (Basel) 80, 275–294. https://doi.org/10.1159/000252586 (2009).

    Article  Google Scholar 

  • 5.

    Nowak, K., Barnett, A. A. & Matsuda, I. Primates in Flooded Habitats: Ecology and Conservation (Cambridge University Press, Cambridge, 2019).

    Google Scholar 

  • 6.

    Matsuda, I. et al. in Primates in Flooded Habitats: Ecology and Conservation (eds Nowak, K., Barnett, A. A. & Matsuda, I.) 15–28 (Cambridge University Press, Cambridge, 2019).

  • 7.

    van Schaik, C. P. & Mirmanto, E. Spatial variation in the structure and litterfall of a Sumatran rain forest. Biotropica 17, 196–205. https://doi.org/10.2307/2388217 (1985).

    Article  Google Scholar 

  • 8.

    Coley, P. D. Interspecific variation in plant anti-herbivore properties: the role of habitat quality and rate of disturbance. New Phytol. 106, 251–263. https://doi.org/10.1111/j.1469-8137.1987.tb04693.x (1987).

    Article  Google Scholar 

  • 9.

    Chapman, C. A., Chapman, L. J., Naughton-Treves, L., Lawes, M. J. & McDowell, L. R. Predicting folivorous primate abundance: validation of a nutritional model. Am. J. Primatol. 62, 55–69. https://doi.org/10.1002/ajp.20006 (2004).

    Article  PubMed  Google Scholar 

  • 10.

    Matsuda, I., Tuuga, A., Bernard, H., Sugau, J. & Hanya, G. Leaf selection by two Bornean colobine monkeys in relation to plant chemistry and abundance. Sci. Rep. 3, 1873. https://doi.org/10.1038/srep01873 (2013).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 11.

    Hanya, G., Kiyono, M., Takafumi, H., Tsujino, R. & Agetsuma, N. Mature leaf selection of Japanese macaques: effects of availability and chemical content. J. Zool. 273, 140–147. https://doi.org/10.1111/j.1469-7998.2007.00308.x (2007).

    Article  Google Scholar 

  • 12.

    Laundré, J. W., Hernández, L. & Altendorf, K. B. Wolves, elk, and bison: reestablishing the “landscape of fear” in Yellowstone National Park, U.S.A. Can. J. Zool. 79, 1401–1409. https://doi.org/10.1139/z01-094 (2001).

    Article  Google Scholar 

  • 13.

    Altendorf, K. B., Laundré, J. W., López-González, C. A. & Brown, J. S. Assessing effects of predation risk on foraging behavior of mule deer. J. Mammal. 82, 430–439. https://doi.org/10.1644/1545-1542(2001)082%3c0430:aeopro%3e2.0.co;2 (2001).

    Article  Google Scholar 

  • 14.

    Laundré, J. W., Hernandez, L. & Ripple, W. J. The landscape of fear: ecological implications of being afraid. Open Ecol. J. 3, 1–7. https://doi.org/10.2174/1874213001003030001 (2010).

    Article  Google Scholar 

  • 15.

    Gautier-Hion, A. in Comparative Ecology and Behaviour of Primates: Proceedings of a Conference Held at the Zoological Society (eds Michael, R. P. & Crook, J. H.) 147–170 (Academic Press, Cambridge, 1973).

  • 16.

    van Schaik, C. P., van Amerongen, A. & van Noordwijk, M. A. in Evolution and Ecology of Macaque Societies (eds Fa, J. A. & Lindburg, D. G.) 160–181 (Cambridge University Press, Cambridge, 1996).

  • 17.

    Matsuda, I., Tuuga, A. & Bernard, H. Riverine refuging by proboscis monkeys (Nasalis larvatus) and sympatric primates: implications for adaptive benefits of the riverine habitat. Mamm. Biol. 76, 165–171. https://doi.org/10.1016/j.mambio.2010.03.005 (2011).

    Article  Google Scholar 

  • 18.

    Albert, A., Savini, T. & Huynen, M. C. Sleeping site selection and presleep behavior in wild pigtailed macaques. Am. J. Primatol. 73, 1222–1230. https://doi.org/10.1002/ajp.20993 (2011).

    Article  PubMed  Google Scholar 

  • 19.

    Matsuda, I., Tuuga, A. & Higashi, S. Clouded leopard (Neofelis diardi) predation on proboscis monkeys (Nasalis larvatus) in Sabah, Malaysia. Primates 49, 227–231. https://doi.org/10.1007/s10329-008-0085-2 (2008).

    Article  PubMed  Google Scholar 

  • 20.

    Otani, Y., Tuuga, A., Bernard, H. & Matsuda, I. Opportunistic predation and predation-related events on long-tailed macaque and proboscis monkey in Kinabatangan, Sabah, Malaysia. J. Trop. Biol. Conserv. 9, 214–218 (2012).

    Google Scholar 

  • 21.

    Matsuda, I., Tuuga, A., Akiyama, Y. & Higashi, S. Selection of river crossing location and sleeping site by proboscis monkeys (Nasalis larvatus) in Sabah, Malaysia. Am. J. Primatol. 70, 1097–1101. https://doi.org/10.1002/ajp.20604 (2008).

    Article  PubMed  Google Scholar 

  • 22.

    Ross, J., Hearn, A. J., Johnson, P. J. & Macdonald, D. W. Activity patterns and temporal avoidance by prey in response to Sunda clouded leopard predation risk. J. Zool. 290, 96–106. https://doi.org/10.1111/jzo.12018 (2013).

    Article  Google Scholar 

  • 23.

    Matsuda, I., Tuuga, A. & Higashi, S. Effects of water level on sleeping-site selection and inter-group association in proboscis monkeys: why do they sleep alone inland on flooded days?. Ecol. Res. 25, 475–482. https://doi.org/10.1007/s11284-009-0677-3 (2010).

    Article  Google Scholar 

  • 24.

    Mittermeier, R. A., Rylands, A. B. & Wilson, D. E. Handbook of the Mammals of the World. Vol. 3. Primates. (Lynx Edicions, Barcelona, 2013).

  • 25.

    Kurland, J. A. A natural history of kra macaques (Macaca fascicularis Raffles, 1821) at the Kutai Reserve, Kalimantan Timur, Indonesia. Primates 14, 245–262. https://doi.org/10.1007/bf01730823 (1973).

    Article  Google Scholar 

  • 26.

    Yeager, C. P. Feeding ecology of the long-tailed macaque (Macaca fascicularis) in Kalimantan Tengah, Indonesia. Int. J. Primatol. 17, 51–62. https://doi.org/10.1007/bf02696158 (1996).

    Article  Google Scholar 

  • 27.

    Choudhury, A. Ecology and behaviour of the pigtailed macaque Macaca nemestrina leonina in some forests of Assam in North-East India. J. Bombay Nat. Hist. Soc. 105, 279–291 (2008).

    Google Scholar 

  • 28.

    Albert, A. Feeding and ranging behavior of northern pigtailed macaques (Macaca leonina): impact on their seed dispersal effectiveness and ecological contribution in a tropical rainforest at Khao Yai National Park, Thailand PhD. thesis, Université de Liège, (2012).

  • 29.

    Caldecott, J. O. An Ecological and Behavioural Study of the Pig-Tailed Macaque, Vol. 21 262 (Karger, Berlin, 1985).

    Google Scholar 

  • 30.

    Gazagne, E. et al. When northern pigtailed macaques (Macaca leonina) cannot select for ideal sleeping sites in a degraded habitat. Int. J. Primatol. 41, 614–633. https://doi.org/10.1007/s10764-020-00173-4 (2020).

    Article  Google Scholar 

  • 31.

    Rodman, P. S. Structural differentiation of microhabitats of sympatric Macaca fascicularis and M. nemestrina in East Kalimantan, Indonesia. Int. J. Primatol. 12, 357–375. https://doi.org/10.1007/bf02547617 (1991).

    Article  Google Scholar 

  • 32.

    Matsuda, I., Otani, Y., Bernard, H., Wong, A. & Tuuga, A. Primate survey in a bornean flooded forest: evaluation of best approach and best timing. Mamm. Study 41, 101–106. https://doi.org/10.3106/041.041.0201 (2016).

    Article  Google Scholar 

  • 33.

    Alexander, R. D. The evolution of social behavior. Annu. Rev. Ecol. Syst. 5, 325–383. https://doi.org/10.1146/annurev.es.05.110174.001545 (1974).

    Article  Google Scholar 

  • 34.

    Cheney, D. L. & Wrangham, R. W. in Primate societies (eds Smuts, B. B., et al.) 227–239 (University of Chicago Press, Chicago, 1987).

  • 35.

    Hill, R. A. & Lee, P. C. Predation risk as an influence on group size in cercopithecoid primates: implications for social structure. J. Zool. 245, 447–456. https://doi.org/10.1111/j.1469-7998.1998.tb00119.x (1998).

    Article  Google Scholar 

  • 36.

    Oi, T. Population organization of wild pig-tailed macaques (Macaca nemestrina nemestrina) in West Sumatra. Primates 31, 15–31. https://doi.org/10.1007/bf02381027 (1990).

    Article  Google Scholar 

  • 37.

    Sackett, G. P., Ruppenthal, G. C. & Davis, A. E. Survival, growth, health, and reproduction following nursery rearing compared with mother rearing in pigtailed monkeys (Macaca nemestrina). Am. J. Primatol. 56, 165–183. https://doi.org/10.1002/ajp.1072 (2002).

    Article  PubMed  Google Scholar 

  • 38.

    Gouzoules, H. & Gouzoules, S. Body size effects on the acoustic structure of pigtail macaque (Macaca nemestrina) screams. Ethology 85, 324–334. https://doi.org/10.1111/j.1439-0310.1990.tb00411.x (2010).

    Article  Google Scholar 

  • 39.

    Matsuda, I. et al. The nose is mightier than the tooth: larger male proboscis monkeys have smaller canines. bioRxiv. https://doi.org/10.1101/848515 (2019).

  • 40.

    Matsuda, I., Tuuga, A. & Higashi, S. The feeding ecology and activity budget of proboscis monkeys. Am. J. Primatol. 71, 478–492. https://doi.org/10.1002/ajp.20677 (2009).

    Article  PubMed  Google Scholar 

  • 41.

    Matsuda, I., Kubo, T., Tuuga, A. & Higashi, S. A Bayesian analysis of the temporal change of local density of proboscis monkeys: implications for environmental effects on a multilevel society. Am. J. Phys. Anthropol. 142, 235–245. https://doi.org/10.1002/ajpa.21218 (2010).

    Article  PubMed  Google Scholar 

  • 42.

    Altmann, J. Observational study of behavior: sampling methods. Behaviour 49, 227–267. https://doi.org/10.1163/156853974×00534 (1974).

    CAS  Article  PubMed  Google Scholar 

  • 43.

    Kumar, D., Kumar, S., Gupta, J., Arya, R. & Gupta, A. A review on chemical and biological properties of Cayratia trifolia Linn. (Vitaceae). Pharmacogn. Rev. 5, 184–188. https://doi.org/10.4103/0973-7847.91117 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 44.

    Cleveland, R. B., Cleveland, W. S., McRae, J. E. & Terpenning, I. STL: a seasonal-trend decomposition procedure based on loess. J. Off. Stat. 6, 3–73 (1990).

    Google Scholar 

  • 45.

    Driver, C. C., Oud, J. H. L. & Voelkle, M. C. Continuous time structural equation modeling with R Package ctsem. J. Stat. Softw. https://doi.org/10.18637/jss.v077.i05 (2017).

    Article  Google Scholar 

  • 46.

    Driver, C. C. & Voelkle, M. C. Hierarchical Bayesian continuous time dynamic modeling. Psychol. Methods 23, 774–799. https://doi.org/10.1037/met0000168 (2018).

    Article  PubMed  Google Scholar 

  • 47.

    R: a language and environment for statistical computing (Foundation for Statistical Computing, Vienna, 2019).

  • 48.

    Tsuji, Y., Hanya, G. & Grueter, C. C. Feeding strategies of primates in temperate and alpine forests: comparison of Asian macaques and colobines. Primates https://doi.org/10.1007/s10329-013-0359-1 (2013).

    Article  PubMed  Google Scholar 

  • 49.

    Campbell, C. J., Fuentes, A., MacKinnon, K. C., Bearder, S. K. & Stumpf, R. M. Primates in Perspective 852 (Oxford University Press, Oxford, 2011).

    Google Scholar 

  • 50.

    Smith, J. A., Donadio, E., Pauli, J. N., Sheriff, M. J. & Middleton, A. D. Integrating temporal refugia into landscapes of fear: prey exploit predator downtimes to forage in risky places. Oecologia 189, 883–890. https://doi.org/10.1007/s00442-019-04381-5 (2019).

    ADS  Article  PubMed  Google Scholar 

  • 51.

    Miller, L. E. & Treves, A. in Primates in Perspective (eds Campbell, C. J. et al.) 525–543 (Oxford University Press, Oxford, 2007).

  • 52.

    Galdikas, B. M. F. & Yeager, C. P. Brief report: crocodile predation on a crab-eating macaque in Borneo. Am. J. Primatol. 6, 49–51. https://doi.org/10.1002/ajp.1350060106 (1984).

    Article  PubMed  Google Scholar 

  • 53.

    van Schaik, C. P., van Noordwijk, M. A., Warsono, B. & Sutriono, E. Party size and early detection of predators in sumatran forest primates. Primates 24, 211–221. https://doi.org/10.1007/bf02381083 (1983).

    Article  Google Scholar 

  • 54.

    Khamcha, D. & Sukumal, N. Burmese python (Python molurus) predation on a pig-tailed macaque (Macaca nemestrina) in Khao Yai National Park. Hamadryad 34, 176–178. https://doi.org/10.13140/2.1.3857.7449 (2009).

    Article  Google Scholar 

  • 55.

    van Schaik, C. & Mitrasetia, T. Changes in the behaviour of wild long-tailed macaques (Macaca fascicularis) after encounters with a model python. Folia Primatol. (Basel) 55, 104–108. https://doi.org/10.1159/000156506 (1990).

    Article  Google Scholar 

  • 56.

    Terborgh, J. Mixed flocks and polyspecific associations: costs and benefits of mixed groups to birds and monkeys. Am. J. Primatol. 21, 87–100. https://doi.org/10.1002/ajp.1350210203 (1990).

    Article  PubMed  Google Scholar 

  • 57.

    Hart, D. in Primate Anti-Predator Strategies, Developments in Primatology: Progress and Prospects (eds Gursky, S. L. & Nekaris, K. A. I.) 27–59 (Springer, New York, 2007).

  • 58.

    Fam, S. D. & Nijman, V. Spizaetus hawk-eagles as predators of arboreal colobines. Primates 52, 105–110. https://doi.org/10.1007/s10329-011-0240-z (2011).

    CAS  Article  PubMed  Google Scholar 

  • 59.

    Prawiradilaga, D. M. Ecology and conservation of endangered Javan Hawk-eagle Spizaetus bartelsi. Ornithol. Sci. 5, 177–186. https://doi.org/10.2326/1347-0558(2006)5[177:eacoej]2.0.co;2 (2006).

    Article  Google Scholar 

  • 60.

    Yeager, C. P. Possible antipredator behavior associated with river crossings by proboscis monkeys (Nasalis larvatus). Am. J. Primatol. 24, 61–66. https://doi.org/10.1002/ajp.1350240107 (1991).

    Article  Google Scholar 

  • 61.

    van Schaik, C. P. & van Hooff, J. A. R. A. M. On the ultimate causes of primate social systems. Behaviour 85, 91–117. https://doi.org/10.1163/156853983×00057 (1983).

    Article  Google Scholar 

  • 62.

    Anderson, J. R. Sleep, sleeping sites, and sleep-related activities: awakening to their significance. Am. J. Primatol. 46, 63–75. https://doi.org/10.1002/(sici)1098-2345(1998)46:1%3c63::aid-ajp5%3e3.0.co;2-t (1998).

    CAS  Article  PubMed  Google Scholar 

  • 63.

    Chapman, C. A., Chapman, L. J. & McLaughlin, R. L. Multiple central place foraging by spider monkeys: travel consequences of using many sleeping sites. Oecologia 79, 506–511. https://doi.org/10.1007/BF00378668 (1989).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 64.

    Teichroeb, J. A., Holmes, T. D. & Sicotte, P. Use of sleeping trees by ursine colobus monkeys (Colobus vellerosus) demonstrates the importance of nearby food. Primates 53, 287–296. https://doi.org/10.1007/s10329-012-0299-1 (2012).

    Article  PubMed  Google Scholar 

  • 65.

    Vessey, S. H. Night observations of free-ranging Rhesus monkeys. Am. J. Phys. Anthropol. 38, 613–619. https://doi.org/10.1002/ajpa.1330380276 (1973).

    CAS  Article  PubMed  Google Scholar 

  • 66.

    Dasilva, G. L. Postural changes and behavioural thermoregulation in Colobus polykomos: the effect of climate and diet. Afr. J. Ecol. 31, 226–241. https://doi.org/10.1111/j.1365-2028.1993.tb00536.x (1993).

    Article  Google Scholar 

  • 67.

    Rodman, P. S. Skeletal differentiation of Macaca fascicularis and Macaca nemestrina in relation to arboreal and terrestrial quadrupedalism. Am. J. Phys. Anthropol. 51, 51–62. https://doi.org/10.1002/ajpa.1330510107 (1979).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    COVID19: an announced pandemic

    Saving Iñupiaq