in

Female-biased gene flow between two species of Darwin’s finches

  • 1.

    Mayr, E. Animal Species and Evolution (Harvard Univ. Press, 1963).

  • 2.

    Abbott, R. et al. Hybridization and speciation. J. Evol. Biol. 26, 229–246 (2013).

  • 3.

    Suarez-Gonzalez, A., Lexer, C. & Cronk, Q. C. B. Adaptive introgression: a plant perspective. Biol. Lett. 14, 20170688 (2018).

  • 4.

    Taylor, S. A. & Larson, E. L. Insights from genomes into the evolutionary importance and prevalence of hybridization in nature. Nat. Ecol. Evol. 3, 170–177 (2019).

  • 5.

    Edwards, S. V., Potter, S., Schmitt, C. J., Bragg, J. G. & Moritz, C. Reticulation, divergence, and the phylogeography–phylogenetics continuum. Proc. Natl Acad. Sci. USA 113, 8025–8032 (2016).

  • 6.

    Elgvin, T. O. et al. The genomic mosaicism of hybrid speciation. Sci. Adv. 3, e1602996 (2017).

  • 7.

    vonHoldt, B. M. et al. Whole-genome sequence analysis shows that two endemic species of North American wolf are admixtures of the coyote and gray wolf. Sci. Adv. 2, e1501714 (2016).

  • 8.

    Larsen, P. A., Marchan-Rivadeneira, M. R. & Baker, R. J. Natural hybridization generates mammalian lineage with species characteristics. Proc. Natl Acad. Sci. USA 107, 11447–11452 (2010).

  • 9.

    Carling, M. D., Lovette, I. J. & Brumfield, R. T. Historical divergence and gene flow: coalescent analyses of mitochondrial, autosomal and sex-linked loci in Passerina buntings. Evolution 64, 1762–1772 (2010).

  • 10.

    Payseur, B. A. & Rieseberg, L. H. A genomic perspective on hybridization and speciation. Mol. Ecol. 25, 2337–2360 (2016).

  • 11.

    Jones, M. R. et al. Adaptive introgression underlies polymorphic seasonal camouflage in snowshoe hares. Science 360, 1355–1358 (2018).

  • 12.

    Liu, K. J. et al. Interspecific introgressive origin of genomic diversity in the house mouse. Proc. Natl Acad. Sci. USA 112, 196–201 (2015).

  • 13.

    Fontaine, M. C. et al. Extensive introgression in a malaria vector species complex revealed by phylogenomics. Science 347, 1258524 (2015).

  • 14.

    Arnold, M. L. & Kunte, K. Adaptive genetic exchange: a tangled history of admixture and evolutionary innovation. Trends Ecol. Evol. 32, 601–611 (2017).

  • 15.

    Pereira, R. J., Barreto, F. S. & Burton, R. S. Ecological novelty by hybridization: experimental evidence for increased thermal tolerance by transgressive segregation in Tigriopus californicus. Evolution 68, 204–215 (2014).

  • 16.

    Hedrick, P. W. Adaptive introgression in animals: examples and comparison to new mutation and standing variation as sources of adaptive variation. Mol. Ecol. 22, 4606–4618 (2013).

  • 17.

    Lewontin, R. C. & Birch, L. C. Hybridization as a source of variation for adaptation to new environments. Evolution 20, 315–336 (1966).

  • 18.

    Campbell, C. R., Poelstra, J. W. & Yoder, A. D. What is speciation genomics? The roles of ecology, gene flow, and genomic architecture in the formation of species. Biol. J. Linn. Soc. 124, 561–583 (2018).

    • Article
    • Google Scholar
  • 19.

    Heliconius Genome Consortium. Butterfly genome reveals promiscuous exchange of mimicry adaptations among species. Nature 487, 94–98 (2012).

  • 20.

    Schumer, M., Rosenthal, G. G. & Andolfatto, P. How common is homoploid hybrid speciation? Evolution 68, 1553–1560 (2014).

  • 21.

    Meier, J. I. et al. Ancient hybridization fuels rapid cichlid fish adaptive radiations. Nat. Commun. 8, 14363 (2017).

  • 22.

    Barrera-Guzman, A. O., Aleixo, A., Shawkey, M. D. & Weir, J. T. Hybrid speciation leads to novel male secondary sexual ornamentation of an Amazonian bird. Proc. Natl Acad. Sci. USA 115, E218–E225 (2018).

  • 23.

    Barrera-Guzmán, A. O., Aleixo, A., Shawkey, M. D. & Weir, J. T. Reply to Rosenthal et al.: both premating and postmating isolation likely contributed to manakin hybrid speciation. Proc. Natl Acad. Sci. USA 115, E4146–E4147 (2018).

  • 24.

    Burns, K. J. et al. Phylogenetics and diversification of tanagers (Passeriformes: Thraupidae), the largest radiation of Neotropical songbirds. Mol. Phylogenet. Evol. 75, 41–77 (2014).

  • 25.

    Lamichhaney, S. et al. Evolution of Darwin’s finches and their beaks revealed by genome sequencing. Nature 518, 371–375 (2015).

  • 26.

    Sato, A. et al. Phylogeny of Darwin’s finches as revealed by mtDNA sequences. Proc. Natl Acad. Sci. USA 96, 5101–5106 (1999).

  • 27.

    Peters, K. J., Myers, S. A., Dudaniec, R. Y., O’Connor, J. A. & Kleindorfer, S. Females drive asymmetrical introgression from rare to common species in Darwin’s tree finches. J. Evol. Biol. 30, 1940–1952 (2017).

  • 28.

    Grant, P. R. Ecology and Evolution of Darwin’s Finches (Princeton Univ. Press, 1999).

  • 29.

    Grant, P. R. & Grant, B. R. 40 Years of Evolution: Darwin’s Finches on Daphne Major Island (Princeton Univ. Press, 2014).

  • 30.

    Grant, P. R. & Grant, B. R. Conspecific versus heterospecific gene exchange between populations of Darwin’s finches. Phil. Trans. R. Soc. B 365, 1065–1076 (2010).

  • 31.

    Grant, B. R. & Grant, P. R. Evolution of Darwin’s finches caused by a rare climatic event. Proc. R. Soc. Lond. B 251, 111–117 (1993).

    • Article
    • Google Scholar
  • 32.

    Grant, P. R. & Grant, B. R. Hybridization of bird species. Science 256, 193–197 (1992).

  • 33.

    Stemshorn, K. C., Reed, F. A., Nolte, A. W. & Tautz, D. Rapid formation of distinct hybrid lineages after secondary contact of two fish species (Cottus sp.). Mol. Ecol. 20, 1475–1491 (2011).

  • 34.

    Mallet, J., Besansky, N. & Hahn, M. W. How reticulated are species? Bioessays 38, 140–149 (2016).

  • 35.

    Kearns, A. M. et al. Genomic evidence of speciation reversal in ravens. Nat. Commun. 9, 906 (2018).

  • 36.

    Joseph, L., Drew, A., Mason, I. J. & Peters, J. L. Introgression between non-sister species of honeyeaters (Aves: Meliphagidae) several million years after speciation. Biol. J. Linn. Soc. 128, 583–591 (2019).

    • Article
    • Google Scholar
  • 37.

    Zhang, G., Parker, P., Li, B., Li, H. & Wang, J. The genome of Darwin’s finch (Geospiza fortis). GigaScience https://doi.org/10.5524/100040 (2012).

  • 38.

    Baack, E. J. & Rieseberg, L. H. A genomic view of introgression and hybrid speciation. Curr. Opin. Genet. Dev. 17, 513–518 (2007).

  • 39.

    Rheindt, F. E. & Edwards, S. V. Genetic introgression: an integral but neglected component of speciation in birds. Auk 128, 620–632 (2011).

    • Article
    • Google Scholar
  • 40.

    Lamichhaney, S. et al. A beak size locus in Darwin’s finches facilitated character displacement during a drought. Science 352, 470–474 (2016).

  • 41.

    Grant, P. R. & Grant, B. R. Evolution of character displacement in Darwin’s finches. Science 313, 224–226 (2006).

  • 42.

    Lamichhaney, S. et al. Rapid hybrid speciation in Darwin’s finches. Science 359, 224–228 (2018).

  • 43.

    Coyne, J. A. & Orr, A. R. Speciation (Sinauer, 2004).

  • 44.

    Kleindorfer, S. et al. Species collapse via hybridization in Darwin’s tree finches. Am. Nat. 183, 325–341 (2014).

  • 45.

    Hasselman, D. J. et al. Human disturbance causes the formation of a hybrid swarm between two naturally sympatric fish species. Mol. Ecol. 23, 1137–1152 (2014).

  • 46.

    Behm, J. E., Ives, A. R. & Boughman, J. W. Breakdown in postmating isolation and the collapse of a species pair through hybridization. Am. Nat. 175, 11–26 (2010).

  • 47.

    Vonlanthen, P. et al. Eutrophication causes speciation reversal in whitefish adaptive radiations. Nature 482, 357–362 (2012).

  • 48.

    Taylor, E. B. et al. Speciation in reverse: morphological and genetic evidence of the collapse of a three-spined stickleback (Gasterosteus aculeatus) species pair. Mol. Ecol. 15, 343–355 (2006).

  • 49.

    Dutheil, J. Y., Munch, K., Nam, K., Mailund, T. & Schierup, M. H. Strong selective sweeps on the X chromosome in the human–chimpanzee ancestor explain its low divergence. PLoS Genet. 11, e1005451 (2015).

  • 50.

    Irwin, D. E. Sex chromosomes and speciation in birds and other ZW systems. Mol. Ecol. 27, 3831–3851 (2018).

  • 51.

    Runemark, A., Eroukhmanoff, F., Nava-Bolanos, A., Hermansen, J. S. & Meier, J. I. Hybridization, sex-specific genomic architecture and local adaptation. Phil. Trans. R. Soc. B 373, 20170419 (2018).

  • 52.

    Lavretsky, P. et al. Speciation genomics and a role for the Z chromosome in the early stages of divergence between Mexican ducks and mallards. Mol. Ecol. 24, 5364–5378 (2015).

  • 53.

    Storchova, R., Reif, J. & Nachman, M. W. Female heterogamety and speciation: reduced introgression of the Z chromosome between two species of nightingales. Evolution 64, 456–471 (2010).

  • 54.

    Hooper, D. M., Griffith, S. C. & Price, T. D. Sex chromosome inversions enforce reproductive isolation across an avian hybrid zone. Mol. Ecol. 28, 1246–1262 (2019).

  • 55.

    Grant, P. R. & Grant, B. R. Adult sex ratio influences mate choice in Darwin’s finches. Proc. Natl Acad. Sci. USA 116, 12373–12382 (2019).

  • 56.

    Grant, P. R. & Grant, B. R. Demography and the genetically effective sizes of two populations of Darwin’s finches. Ecology 73, 766–784 (1992).

    • Article
    • Google Scholar
  • 57.

    Seehausen, O., Takimoto, G., Roy, D. & Jokela, J. Speciation reversal and biodiversity dynamics with hybridization in changing environments. Mol. Ecol. 17, 30–44 (2008).

  • 58.

    Rudman, S. M. & Schluter, D. Ecological impacts of reverse speciation in threespine stickleback. Curr. Biol. 26, 490–495 (2016).

  • 59.

    Wirtz, P. Mother species–father species: unidirectional hybridization in animals with female choice. Anim. Behav. 58, 1–12 (1999).

  • 60.

    Grant, P. R. & Grant, B. R. Phenotypic and genetic effects of hybridization in Darwin’s finches. Evolution 48, 297–316 (1994).

  • 61.

    Grant, P. R. & Grant, B. R. Role of sexual imprinting in assortative mating and premating isolation in Darwin’s finches. Proc. Natl Acad. Sci. USA 115, E10879–E10887 (2018).

  • 62.

    Ellegren, H. The evolutionary genomics of birds. Annu. Rev. Ecol. Evol. Syst. 44, 239–259 (2013).

    • Article
    • Google Scholar
  • 63.

    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

  • 64.

    Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

  • 65.

    Van der Auwera, G. A. et al. From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr. Protoc. Bioinformatics 43, 10–33 (2013).

  • 66.

    Zhang, G. et al. Comparative genomics reveals insights into avian genome evolution and adaptation. Science 346, 1311–1320 (2014).

  • 67.

    Felsenstein, J. PHYLIP—Phylogeny Inference Package (version 3.2). Cladistics 5, 164–166 (1989).

    • Google Scholar
  • 68.

    Schlötterer, C., Tobler, R., Kofler, R. & Nolte, V. Sequencing pools of individuals—mining genome-wide polymorphism data without big funding. Nat. Rev. Genet. 15, 749–763 (2014).

  • 69.

    Browning, B. L., Zhou, Y. & Browning, S. R. A one-penny imputed genome from next-generation reference panels. Am. J. Hum. Genet. 103, 338–348 (2018).

  • 70.

    Grant, P. R. & Grant, B. R. How and Why Species Multiply: The Radiation of Darwin’s Finches (Princeton Univ. Press, 2008).


  • Source: Ecology - nature.com

    Hitchhiking, collapse, and contingency in phage infections of migrating bacterial populations

    Technique could enable cheaper fertilizer production