in

Fine-scale species distribution modelling and genotyping by sequencing to examine hybridisation between two narrow endemic plant species

  • 1.

    Todesco, M. et al. Hybridization and extinction. Evol. Appl. 9, 892–908, https://doi.org/10.1111/eva.12367 (2016).

  • 2.

    Rhymer, J. M. & Simberloff, D. Extinction by hybridization and introgression. Annu. Rev. Ecol. Syst. 27, 83–109, https://doi.org/10.1146/annurev.ecolsys.27.1.83 (1996).

    • Article
    • Google Scholar
  • 3.

    Muhlfeld, C. C. et al. Invasive hybridization in a threatened species is accelerated by climate change. Nat. Clim. Change 4, 620–624, https://doi.org/10.1038/nclimate2252 (2014).

  • 4.

    Wolf, D. E., Takebayashi, N. & Rieseberg, L. H. Predicting the risk of extinction through hybridization. Conserv. Biol. 15, 1039–1053, https://doi.org/10.1046/j.1523-1739.2001.0150041039.x (2001).

    • Article
    • Google Scholar
  • 5.

    Whiteley, A. R., Fitzpatrick, S. W., Funk, W. C. & Tallmon, D. A. Genetic rescue to the rescue. Trends Ecol. Evol. 30, 42–49, https://doi.org/10.1016/j.tree.2014.10.009 (2015).

  • 6.

    Prentis, P. J., White, E. M., Radford, I. J., Lowe, A. J. & Clarke, A. R. Can hybridization cause local extinction: a case for demographic swamping of the Australian native Senecio pinnatifolius by the invasive Senecio madagascariensis? N. Phytol. 176, 902–912, https://doi.org/10.1111/j.1469-8137.2007.02217.x (2007).

  • 7.

    Myers, N., Mittermeier, R., Mittermeier, C. G., Da Fonseca, G. A. & Kent, J. Biodiversity hotspots for conservation priorities. Nat. 403, 853–858, https://doi.org/10.1038/35002501 (2000).

  • 8.

    Hopper, S. D. & Gioia, P. The southwest Australian floristic region: evolution and conservation of a global hot spot of biodiversity. Annu. Rev. Ecol. Syst. 35, 623–650, https://doi.org/10.1146/annurev.ecolsys.35.112202.130201 (2004).

    • Article
    • Google Scholar
  • 9.

    Robinson, T. P., Di Virgilio, G., Temple-Smith, D., Hesford, J. & Wardell-Johnson, G. W. Characterisation of range restriction amongst the rare flora of Banded Ironstone Formation ranges in semiarid south-western Australia. Aust. J. Bot. 67, 234–247, https://doi.org/10.1071/BT18111 (2018).

    • Article
    • Google Scholar
  • 10.

    Goulet, B. E., Roda, F. & Hopkins, R. Hybridization in plants: old ideas, new techniques. Plant. Physiol. 173, 65–78, https://doi.org/10.1104/pp.16.01340 (2017).

  • 11.

    Allendorf, F. W., Hohenlohe, P. A. & Luikart, G. Genomics and the future of conservation genetics. Nat. Rev. Genet. 11, 697–709, https://doi.org/10.1038/nrg2844 (2010).

  • 12.

    Sansaloni, C. P. et al. A high-density Diversity Arrays Technology (DArT) microarray for genome-wide genotyping in Eucalyptus. Plant. Methods 6, 16, https://doi.org/10.1186/1746-4811-6-16 (2010).

  • 13.

    Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modelling of species geographic distributions. Ecol. Model. 190, 231–259, https://doi.org/10.1016/j.ecolmodel.2005.03.026. (2006).

    • Article
    • Google Scholar
  • 14.

    Tarroso, P., Pereira, R. J., Martínez-Freiría, F., Godinho, R. & Brito, J. C. Hybridization at an ecotone: ecological and genetic barriers between three Iberian vipers. Mol. Ecol. 23, 1108–1123, https://doi.org/10.1111/mec.12671 (2014).

  • 15.

    Hudson, C. J., Freeman, J. S., Myburg, A. A., Potts, B. M. & Vaillancourt, R. E. Genomic patterns of species diversity and divergence in Eucalyptus. N. Phytol. 206, 1378–1390, https://doi.org/10.1111/nph.13316 (2015).

  • 16.

    Riordan, E. C. et al. Association of genetic and phenotypic variability with geography and climate in three southern California oaks. Am. J. Bot. 103, 73–85, https://doi.org/10.3732/ajb.1500135 (2016).

  • 17.

    Nezer, O., Bar-David, S., Gueta, T. & Carmel, Y. High-resolution species-distribution model based on systematic sampling and indirect observations. Biodivers. Conserv. 26, 421–437, https://doi.org/10.1007/s10531-016-1251-2 (2017).

    • Article
    • Google Scholar
  • 18.

    Gilfillan, S. & Barrett, S. Mountain Villarsia (Villarsia calthifolia) Interim recovery plan 2004–2009. Department of Conservation and Land Management, Albany WA. Retrieved from, http://www.environment.gov.au/system/files/resources/9188b047-2805-4c42-a00b-22c033155095/files/v-calthifolia.pdf (2004).

  • 19.

    Brown, A., Thompson-Dans, C. & Marchant, N. (eds). Western Australia’s threatened flora. Perth, Western Australia: Department of Conservation and Land Management (1998).

  • 20.

    Ornduff, R. A new species of Villarsia (Menyanthaceae) from the Porongurup Range, Western Australia. Sys Bot. 15, 216–220, https://doi.org/10.2307/2419175 (1990).

    • Article
    • Google Scholar
  • 21.

    Robinson, C. J. & Coates, D. J. Declared rare and poorly known plants in the Albany District. Wildlife Management Program No. 20. Perth, Western Australia: Department of Conservation and Land Management (1995).

  • 22.

    Keppel, G. et al. A low-elevation mountain range as an important refugium for two narrow endemics in the Southwest Australian Floristic Region biodiversity hotspot. Ann. Bot-London 119, 289–300, https://doi.org/10.1093/aob/mcw182 (2017).

    • Article
    • Google Scholar
  • 23.

    Barrett, S. & Yates, C. J. Risks to a mountain summit ecosystem with endemic biota in southwestern Australia. Austral Ecol. 40, 423–432, https://doi.org/10.1111/aec.12199 (2015).

    • Article
    • Google Scholar
  • 24.

    Abbott, I. The vascular flora of the Porongurup Range south-western Australia. West. Australian Herbarium Res. Notes 7, 1–16 (1982).

    • Google Scholar
  • 25.

    Tippery, N. P. & Les, D. H. A new genus and new combinations in Australian Villarsia (Menyanthaceae). Novon 19, 404–411, https://doi.org/10.3417/2007181 (2009).

    • Article
    • Google Scholar
  • 26.

    Wills, A. & Abbott, I. Landscape-scale species richness of earthworms in the Porongurup Range, Western Australia: influence of aspect, soil fertility, and vegetation type. Biol. Fert. Soils 39, 94–102, https://doi.org/10.1007/s00374-003-0683-5 (2003).

    • Article
    • Google Scholar
  • 27.

    Ornduff, R. Comparative fecundity and population composition of heterostylous and non-heterostylous species of Villarsia (Menyanthaceae) in Western Australia. Am. J. Bot. 73, 282–286, https://doi.org/10.2307/2444182 (1986).

    • Article
    • Google Scholar
  • 28.

    Chuang, T. I. & Ornduff, R. Seed morphology and systematics of Menyanthaceae. Am. J. Bot. 12, 1396–1406, https://doi.org/10.1002/j.1537-2197.1992.tb13750.x (1992).

    • Article
    • Google Scholar
  • 29.

    Belbin, L. PATN: pattern analysis package: Technical reference. Division of Wildlife and Ecology. CSIRO (1994).

  • 30.

    Gower, J. C. A general coefficient of similarity and some of its properties. Biometrics 27, 857–871, https://doi.org/10.2307/2528823 (1971).

    • Article
    • Google Scholar
  • 31.

    Hammer, Ø., Harper, D. A. & Ryan, P. D. PAST: paleontological statistics software package for education and data analysis. Palaeontol. electron. 22, 1–9 (2001).

    • Google Scholar
  • 32.

    Steane, D. A. et al. Genome‐wide scans detect adaptation to aridity in a widespread forest tree species. Mol. Ecol. 23, 2500–2513, https://doi.org/10.1111/mec.12751 (2014).

  • 33.

    Jordan, R., Dillon, S. K., Prober, S. M. & Hoffmann, A. A. Landscape genomics reveals altered genome wide diversity within revegetated stands of Eucalyptus microcarpa (Grey Box). N. Phytol. 212, 992–1006, https://doi.org/10.1111/nph.14084 (2016).

  • 34.

    Pazmiño, D. A., Maes, G. E., Simpfendorfer, C. A., Salinas-de-León, P. & van Herwerden, L. Genome-wide SNPs reveal low effective population size within confined management units of the highly vagile Galapagos shark (Carcharhinus galapagensis). Conserv. Genet. 5, 1151–1163, https://doi.org/10.1007/s10592-017-0967-1 (2017).

    • Article
    • Google Scholar
  • 35.

    Gruber, B., Unmack, P. J., Berry, O. F. & Georges, A. dartr: An r package to facilitate analysis of SNP data generated from reduced representation genome sequencing. Mol. Ecol. Resour. 18, 691–699, https://doi.org/10.1111/1755-0998.12745 (2018).

  • 36.

    Foll, M. & Gaggiotti, O. A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: a Bayesian perspective. Genet. 180, 977–993, https://doi.org/10.1534/genetics.108.092221 (2008).

    • Article
    • Google Scholar
  • 37.

    Steane, D. A. et al. Genome-wide scans reveal cryptic population structure in a dry-adapted eucalypt. Tree Genet. Genomes 11, 33, https://doi.org/10.1007/s11295-015-0864-z (2015).

    • Article
    • Google Scholar
  • 38.

    Jombart, T. adegenet: a R package for the multivariate analysis of genetic markers. Bioinforma. 24, 1403–1405, https://doi.org/10.1093/bioinformatics/btn129 (2008).

  • 39.

    Goudet, J. Hierfstat, a package for R to compute and test hierarchical F‐statistics. Mol. Ecol. Resour. 5, 184–186, https://doi.org/10.1111/j.1471-8286.2004.00828.x (2005).

    • Article
    • Google Scholar
  • 40.

    Nei, M. Genetic distance between populations. Am. Nat. 106, 283–292, https://doi.org/10.1086/282771 (1972).

    • Article
    • Google Scholar
  • 41.

    Pembleton, L. W., Cogan, N. O. & Forster, J. W. StAMPP: an R package for calculation of genetic differentiation and structure of mixed‐ploidy level populations. Mol. Ecol. Resour. 13, 946–952, https://doi.org/10.1111/1755-0998.12129 (2013).

  • 42.

    Peakall, R. & Smouse, P. E. GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Resour. 6, 288–295, https://doi.org/10.1093/bioinformatics/bts460 (2006).

  • 43.

    Payseur, B. A. & Rieseberg, L. H. A genomic perspective on hybridization and speciation. Mol. Ecol. 25, 2337–2360, https://doi.org/10.1111/mec.13557 (2016).

  • 44.

    Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genet. 155, 945–959 (2000).

    • CAS
    • Google Scholar
  • 45.

    Falush, D., Stephens, M. & Pritchard, J. K. Inference of population structure using multi-locus genotype data: linked loci and correlated allele frequencies. Genet. 164, 1567–1587 (2003).

    • CAS
    • Google Scholar
  • 46.

    Field, D. L., Ayre, D. J., Whelan, R. J. & Young, A. G. Patterns of hybridization and asymmetrical gene flow in hybrid zones of the rare Eucalyptus aggregata and common E. rubida. Heredity 106, 841–853, https://doi.org/10.1038/hdy.2010.127 (2011).

  • 47.

    Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 14, 2611–2620, https://doi.org/10.1111/j.1365-294X.2005.02553.x (2005).

  • 48.

    Earl, D. A. & vonHoldt, B. M. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359–361, https://doi.org/10.1007/s12686-011-9548-7 (2012).

    • Article
    • Google Scholar
  • 49.

    Jakobsson, M. & Rosenberg, N. A. CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinforma. 23, 1801–1806, https://doi.org/10.1093/bioinformatics/btm233 (2007).

  • 50.

    Anderson, E. C. & Thompson, E. A. A model-based method for identifying species hybrids using multi-locus genetic data. Genet. 160, 1217–1229 (2002).

    • CAS
    • Google Scholar
  • 51.

    Nielsen, E. E., Bach, L. A. & Kotlicki, P. HYBRIDLAB (version 1.0): a program for generating simulated hybrids from population samples. Mol. Ecol. Notes 6, 971–973, https://doi.org/10.1111/j.1471-8286.2006.01433.x (2006).

    • Article
    • Google Scholar
  • 52.

    Fielding, A. H. & Bell, J. F. A review of methods for the assessment of prediction errors in conservation presence/absence models. Env. Conserv. 24, 38–49, https://doi.org/10.1017/S0016774600023726 (1997).

    • Article
    • Google Scholar
  • 53.

    Gessler, P. E., Moore, I. D., McKenzie, N. J. & Ryan, P. J. Soil-landscape modelling and spatial prediction of soil attributes. Int. J. Geogr. Inf. Syst. 9, 421–432, https://doi.org/10.1080/02693799508902047 (1995).

    • Article
    • Google Scholar
  • 54.

    ESRI. ArcGIS Desktop: Release 10.4. Redlands, CA: Environmental Systems Research Institute (2015).

  • 55.

    Conrad, O. et al. System for Automated Geoscientific Analyses (SAGA) v. 2.1.4, Geoscience Model Development 8, 1991–2007, https://doi.org/10.5194/gmd-8-1991-2015 (2015).

  • 56.

    Riley, S. J. Index that quantifies topographic heterogeneity. Intermt. J. Sci. 5, 23–27 (1999).

    • Google Scholar
  • 57.

    Guisan, A., Weiss, S. B. & Weiss, A. D. GLM versus CCA spatial modelling of plant species distribution. Plant. Ecol. 143, 107–122, https://doi.org/10.1023/A:1009841519580 (1999).

    • Article
    • Google Scholar
  • 58.

    Boehner, J. et al. Soil regionalisation by means of terrain analysis and process parameterisation. In ‘Soil classification 2001. European Soil Bureau, Research Report No. 7’. (eds. Micheli, E., Nachtergaele, F. & Montanarella, L.) pp. 213–222. (European Soil Bureau: Luxembourg) (2002).

  • 59.

    Worth, J. R. P., Harrison, P. A., Williamson, G. J. & Jordan, G. J. Whole range and regional-based ecological niche models predict differing exposure to 21st century climate change in the key cool temperate rainforest tree southern beech (Nothofagus cunninghamii). Austral Ecol. 40, 126–138, https://doi.org/10.1111/aec.12184 (2015).

    • Article
    • Google Scholar
  • 60.

    Engler, R., Guisan, A. & Rechsteiner, L. An improved approach for predicting the distribution of rare and endangered species from occurrence and pseudo‐absence data. J. Appl. Ecol. 41, 263–274, https://doi.org/10.1111/j.0021-8901.2004.00881.x (2004).

    • Article
    • Google Scholar
  • 61.

    Lamont, B. B., He, T., Enright, N. J., Krauss, S. L. & Miller, B. P. Anthropogenic disturbance promotes hybridization between Banksia species by altering their biology. J. Evolution Biol. 16, 551–557, https://doi.org/10.1046/j.1420-9101.2003.00548.x (2003).

  • 62.

    Parsons, K. & Hermanutz, L. Conservation of rare, endemic braya species (Brassicaceae): Breeding system variation, potential hybridization and human disturbance. Biol. Conserv. 128, 201–214, https://doi.org/10.1016/j.biocon.2005.09.029 (2006).

    • Article
    • Google Scholar
  • 63.

    Neil, K. & Wu, J. Effects of urbanization on plant flowering phenology: a review. Urban. Ecosyst. 9, 243–257, https://doi.org/10.1007/s11252-006-9354-2 (2006).

    • Article
    • Google Scholar
  • 64.

    Levin, D. A. Flowering‐time plasticity facilitates niche shifts in adjacent populations. N. Phytol. 183, 661–666, https://doi.org/10.1111/j.1469-8137.2009.02889.x (2009).

    • Article
    • Google Scholar
  • 65.

    Xu, S., Tauer, C. G. & Nelson, C. D. Natural hybridization within seed sources of shortleaf pine (Pinus echinata Mill.) and loblolly pine (Pinus taeda L.). Tree Genet. Genomes 4, 849–858, https://doi.org/10.1007/s11295-008-0157-x (2008).

    • Article
    • Google Scholar
  • 66.

    Abbott, R. J. & Brennan, A. C. Altitudinal gradients, plant hybrid zones and evolutionary novelty. Philos. T R. Soc. B 5, 369, https://doi.org/10.1098/rstb.2013.0346 (2014).

    • Article
    • Google Scholar
  • 67.

    Janes, J. & Hamilton, J. Mixing it up: the role of hybridization in forest management and conservation under climate change. For. 8, 237, https://doi.org/10.3390/f8070237 (2017).

    • Article
    • Google Scholar
  • 68.

    Ortego, J., Gugger, P. F., Riordan, E. C., Sork, V. L. & Emerson, B. Influence of climatic niche suitability and geographical overlap on hybridization patterns among southern Californian oaks. J. Biogeogr. 41, 1895–1908, https://doi.org/10.1111/jbi.12334 (2014).

    • Article
    • Google Scholar
  • 69.

    Nevill, P. G., Després, T., Bayly, M. J., Bossinger, G. & Ades, P. K. Shared phylogeographic patterns and widespread chloroplast haplotype sharing in Eucalyptus species with different ecological tolerances. Tree Genet. Genomes 10, 1079–92, https://doi.org/10.1007/s11295-014-0744-y (2014).

    • Article
    • Google Scholar
  • 70.

    Allendorf, F. W., Leary, R. F., Spruell, P. & Wenburg, J. K. The problems with hybrids: setting conservation guidelines. Trends Ecol. Evol. 16, 613–622, https://doi.org/10.1016/S0169-5347(01)02290-X (2001).

    • Article
    • Google Scholar
  • 71.

    Gómez, J. M., González-Megías, A., Lorite, J., Abdelaziz, M. & Perfectti, F. The silent extinction: climate change and the potential hybridization-mediated extinction of endemic high-mountain plants. Biodivers. Conserv. 24, 1843–1857, https://doi.org/10.1007/s10531-015-0909-5 (2015).

    • Article
    • Google Scholar

  • Source: Ecology - nature.com

    What is the future of lighting waste?

    MIT helps first-time entrepreneur build food hospitality company