in

Fire deficit increases wildfire risk for many communities in the Canadian boreal forest

  • 1.

    Hanes, C. et al. Fire regime changes in Canada over the last half century. Can. J. For. Res. 49, 256–269 (2019).

    • Article
    • Google Scholar
  • 2.

    Kasischke, E. S. & Turetsky, M. R. Recent changes in the fire regime across the North American boreal region—Spatial and temporal patterns of burning across Canada and Alaska. Geophys. Res. Lett. 33, L09703 (2006).

    • ADS
    • Google Scholar
  • 3.

    Flannigan, M. D., Amiro, B. D., Logan, K. A., Stocks, B. J. & Wotton, B. M. Forest fires and climate change in the 21st century. Mitig. Adapt. Strateg. Glob. Chang 11, 847–859 (2006).

    • Article
    • Google Scholar
  • 4.

    Xi, D. D., Taylor, S. W., Woolford, D. G. & Dean, C. Statistical models of key components of wildfire risk. Annu. Rev. Stat. Appl. 6, 197–222 (2019).

  • 5.

    Johnston, L. M. & Flannigan, M. D. Mapping Canadian wildland fire interface areas. Int. J. Wildland Fire 27, 1–14 (2017).

    • Article
    • Google Scholar
  • 6.

    Flannigan, M. D., Logan, K. A., Amiro, B. D., Skinner, W. R. & Stocks, B. Future area burned in Canada. Clim. Change 72, 1–16 (2005).

  • 7.

    Wotton, B., Flannigan, M. & Marshall, G. Potential climate change impacts on fire intensity and key wildfire suppression thresholds in Canada. Environ. Res. Lett. 12, 095003 (2017).

  • 8.

    Canadian Council of Forest Ministers. Canadian Wildland Fire Strategy: a Vision for an Innovative and Integrated Approach to Managing the Risks (Natural Resources Canada, Canadian Forest Service, Northern Forestry Centre, Edmonton, Alberta, Canada 2005).

  • 9.

    Parisien, M.-A. et al. The spatially varying influence of humans on fire probability in North America. Environ. Res. Lett. 11, 075005 (2016).

  • 10.

    Stocks, B. J. et al. Large forest fires in Canada, 1959-1997. J. Geophys. Res. Atmos. 107, 8149 (2002).

    • Article
    • Google Scholar
  • 11.

    Cumming, S. Effective fire suppression in boreal forests. Can. J. For. Res 35, 772–786 (2005).

    • Article
    • Google Scholar
  • 12.

    Martell, D. L. & Sun, H. The impact of fire suppression, vegetation, and weather on the area burned by lightning-caused forest fires in Ontario. Can. J. For. Res. 38, 1547–1563 (2008).

    • Article
    • Google Scholar
  • 13.

    Baker, W. L. Restoration of landscape structure altered by fire suppression. Conserv. Biol. 8, 763–769 (1994).

    • Article
    • Google Scholar
  • 14.

    Parks, S. A. et al. Wildland fire deficit and surplus in the western United States, 1984–2012. Ecosphere 6, 275 (2015).

  • 15.

    Thompson, D. K. et al. Fuel accumulation in a high-frequency boreal wildfire regime: from wetland to upland. Can. J. For. Res 47, 957–964 (2017).

    • Article
    • Google Scholar
  • 16.

    Héon, J., Arseneault, D. & Parisien, M.-A. Resistance of the boreal forest to high burn rates. Proc. Natl Acad. Sci. USA 111, 13888–13893 (2014).

  • 17.

    Beverly, J. L. Time since prior wildfire affects subsequent fire containment in black spruce. Int. J. Wildland Fire 26, 919–929 (2017).

    • Article
    • Google Scholar
  • 18.

    Bernier, P. et al. Mapping local effects of forest properties on fire risk across Canada. Forests 7, 157 (2016).

    • Article
    • Google Scholar
  • 19.

    Hart, S. J. et al. Examining forest resilience to changing fire frequency in a fire‐prone region of boreal forest. Glob. Change Biol. 25, 869–884 (2018).

  • 20.

    Marchal, J., Cumming, S. G. & McIntire, E. J. B. Turning down the heat: Vegetation feedbacks limit fire regime responses to global warming. Ecosystems 23, 204–216 (2020).

    • Article
    • Google Scholar
  • 21.

    Boulanger, Y. et al. Changes in mean forest age in Canada’s forests could limit future increases in area burned but compromise potential harvestable conifer volumes. Can. J. For. Res 47, 755–764 (2017).

    • Article
    • Google Scholar
  • 22.

    Erni, S., Arseneault, D., Parisien, M. A. & Begin, Y. Spatial and temporal dimensions of fire activity in the fire-prone eastern Canadian taiga. Glob. Change Biol. 23, 1152–1166 (2017).

  • 23.

    Stocks, B. & Simard, A. Forest fire management in Canada. Disaster Manag. 5, 21–27 (1993).

    • Google Scholar
  • 24.

    Magnussen, S. & Taylor, S. W. Inter- and intra-annual profiles of fire regimes in the managed forests of Canada and implications for resource sharing. Int. J. Wildland Fire 21, 328–341 (2012).

    • Article
    • Google Scholar
  • 25.

    Martell, D. L., Drysdale, R. J., Doan, G. E. & Boychuk, D. An evaluation of forest fire initial attack resources. Interfaces 14, 20–32 (1984).

    • Article
    • Google Scholar
  • 26.

    Tymstra, C., Stocks, B. J., Cai, X. & Flannigan, M. D. Wildfire management in Canada: review, challenges and opportunities. Progress in Disaster. Science 5, 100045 (2020).

    • Google Scholar
  • 27.

    Campos-Ruiz, R., Parisien, M.-A. & Flannigan, M. Temporal patterns of wildfire activity in areas of contrasting human influence in the Canadian boreal forest. Forests 9, 159 (2018).

    • Article
    • Google Scholar
  • 28.

    Cui, W. & Perera, A. H. What do we know about forest fire size distribution, and why is this knowledge useful for forest management? Int. J. Wildland Fire 17, 234–244 (2008).

    • Article
    • Google Scholar
  • 29.

    Hirsch, K. G. & Martell, D. L. A review of initial attack fire crew productivity and effectiveness. Int. J. Wildland Fire 6, 199–215 (1996).

    • Article
    • Google Scholar
  • 30.

    Erni, S. et al. Developing a two-level fire regime zonation system for Canada. Can. J. For. Res 50, 259–273 (2020).

    • Google Scholar
  • 31.

    Moritz, M. A., Morais, M. E., Summerell, L. A., Carlson, J. & Doyle, J. Wildfires, complexity, and highly optimized tolerance. Proc. Natl Acad. Sci. USA 102, 17912–17917 (2005).

  • 32.

    Kirchmeier-Young, M. C., Zwiers, F. W., Gillett, N. P. & Cannon, A. J. Attributing extreme fire risk in Western Canada to human emissions. Clim. Change 144, 365–379 (2017).

  • 33.

    Wang, X. et al. The potential and realized spread of wildfires across Canada. Glob. Change Biol. 20, 2518–2530 (2014).

  • 34.

    Boulanger, Y., Gauthier, S. & Burton, P. J. A refinement of models projecting future Canadian fire regimes using homogeneous fire regime zones. Can. J. For. Res 44, 365–376 (2014).

  • 35.

    Stocks, B. & Martell, D. L. Forest fire management expenditures in Canada: 1970–2013. For. Chron. 92, 298–306 (2016).

    • Article
    • Google Scholar
  • 36.

    Podur, J. J. & Martell, D. L. A simulation model of the growth and suppression of large forest fires in Ontario. Int. J. Wildland Fire 16, 285–294 (2007).

    • Article
    • Google Scholar
  • 37.

    Hirsch, K. G., Corey, P. N. & Martell, D. L. Using expert judgment to model initial attack fire crew effectiveness. For. Sci. 44, 539–549 (1998).

    • Google Scholar
  • 38.

    Arno, S. F. & Brown, J. K. Overcoming the paradox in managing wildland fire. West. Wildl. 17, 40–46 (1991).

    • Google Scholar
  • 39.

    Calkin, D. E., Thompson, M. P. & Finney, M. A. Negative consequences of positive feedbacks in US wildfire management. For. Ecosyst. 2, 9 (2015).

    • Article
    • Google Scholar
  • 40.

    Prichard, S. J., Stevens-Rumann, C. S. & Hessburg, P. F. Tamm review: shifting global fire regimes: lessons from reburns and research needs. For. Ecol. Manag. 396, 217–233 (2017).

    • Article
    • Google Scholar
  • 41.

    Erni, S., Arseneault, D. & Parisien, M.-A. Stand age influence on potential wildfire ignition and spread in the boreal forest of northeastern Canada. Ecosystems 21, 1471–1486 (2018).

    • Article
    • Google Scholar
  • 42.

    Bouchard, M., Pothier, D. & Gauthier, S. Fire return intervals and tree species succession in the North Shore region of eastern Quebec. Can. J. For. Res 38, 1621–1633 (2008).

    • Article
    • Google Scholar
  • 43.

    Nielsen, S., DeLancey, E., Reinhardt, K. & Parisien, M.-A. Effects of lakes on wildfire activity in the boreal forests of Saskatchewan, Canada. Forests 7, 265 (2016).

    • Article
    • Google Scholar
  • 44.

    Agyapong, V. I. et al. Prevalence rates and predictors of generalized anxiety disorder symptoms in residents of Fort McMurray six months after a wildfire. Front. Psychiatry 9, 345 (2018).

  • 45.

    Parks, S. A., Parisien, M. A., Miller, C., Holsinger, L. M. & Baggett, L. S. Fine‐scale spatial climate variation and drought mediate the likelihood of reburning. Ecol. Appl. 28, 573–586 (2018).

  • 46.

    Holsinger, L., Parks, S. A. & Miller, C. Weather, fuels, and topography impede wildland fire spread in western US landscapes. For. Ecol. Manag. 380, 59–69 (2016).

    • Article
    • Google Scholar
  • 47.

    Kochtubajda, B. et al. An assessment of surface and atmospheric conditions associated with the extreme 2014 wildfire season in Canada’s Northwest Territories. Atmos. Ocean 57, 73–90 (2019).

  • 48.

    Prestemon, J. P., Butry, D. T., Abt, K. L. & Sutphen, R. Net benefits of wildfire prevention education efforts. For. Sci. 56, 181–192 (2010).

    • Google Scholar
  • 49.

    Calkin, D. E., Cohen, J. D., Finney, M. A. & Thompson, M. P. How risk management can prevent future wildfire disasters in the wildland-urban interface. Proc. Natl Acad. Sci. USA 111, 746–751 (2014).

  • 50.

    Hirsch, K. et al. Fire-smart forest management: a pragmatic approach to sustainable forest management in fire-dominated ecosystems. For. Chron. 77, 357–363 (2001).

    • Article
    • Google Scholar
  • 51.

    White, C. A., Perrakis, D. D., Kafka, V. G. & Ennis, T. Burning at the edge: Integrating biophysical and eco-cultural fire processes in Canada’s parks and protected areas. Fire Ecol. 7, 74–106 (2011).

    • Article
    • Google Scholar
  • 52.

    Smith, A. M. et al. The science of firescapes: achieving fire-resilient communities. Bioscience 66, 130–146 (2016).

  • 53.

    Amiro, B., Stocks, B., Alexander, M. & Flannigan, M. Wotton B. Fire, climate change, carbon and fuel management in the Canadian boreal forest. Int. J. Wildland Fire 10, 405–413 (2001).

    • Article
    • Google Scholar
  • 54.

    Omi, P. N. Theory and practice of wildland fuels management. Curr. Forestry Rep. 1, 100–117 (2015).

    • Article
    • Google Scholar
  • 55.

    Astrup, R., Bernier, P. Y., Genet, H., Lutz, D. A. & Bright, R. M. A sensible climate solution for the boreal forest. Nat. Clim. Change 8, 11–12 (2018).

  • 56.

    Ryan, K. C., Knapp, E. E. & Varner, J. M. Prescribed fire in North American forests and woodlands: history, current practice, and challenges. Front. Ecol. Environ. 11, e15–e24 (2013).

    • Article
    • Google Scholar
  • 57.

    Stephens, S. L. et al. Temperate and boreal forest mega-fires: characteristics and challenges. Front. Ecol. Environ. 12, 115–122 (2014).

    • Article
    • Google Scholar
  • 58.

    Hope, E. S., McKenney, D. W., Pedlar, J. H., Stocks, B. J. & Gauthier, S. Wildfire suppression costs for Canada under a changing climate. PloS ONE 11, e0157425 (2016).

  • 59.

    Ecological Stratification Working Group. A National Ecological Framework for Canada (Agriculture and Agri-Food Canada and Environment Canada, Research Branch, Centre for Land and Biological Resources Research, and Environment Canada, State of the Environment Directorate, Ecozone Analysis Branch, 1995).

  • 60.

    Natural Resources Canada. North American Atlas – Populated Places. Dataset (Natural Resources Canada, Mapping Information Branch, The Atlas of Canada, 2010).

  • 61.

    Statistics Canada. A National Overview – Population And Dwelling Counts (2001 Census: data products, Ottawa, Ontario, Canada, 2002).

  • 62.

    Beaudoin, A. et al. Mapping attributes of Canada’s forests at moderate resolution through kNN and MODIS imagery. Can. J. For. Res 44, 521–532 (2014).

    • Article
    • Google Scholar
  • 63.

    Canadian Forest Service. Canadian National Fire Database – Agency Fire Data (Natural Resources Canada, Canadian Forest Service, Northern Forestry Centre, Edmonton, Alberta, Canada, 2019).

  • 64.

    Guindon, L. et al. Missing forest cover gains in boreal forests explained. Ecosphere 9, e02094 (2018).

    • Article
    • Google Scholar
  • 65.

    Natural Resources Canada. Canada 250m Land Cover Time Series 2000-2011 (Natural Resources Canada, Earth Science sector, Canada Centre for Remoting Sensing, Ottawa, Ontario, Canada, 2012).

    • Google Scholar
  • 66.

    Natural Resources Canada. National Risk Analysis Fuels Map (Natural Resources Canada, Canadian Forest Service, Northern Forestry Centre, Edmonton, Alberta, Canada, 2019).

    • Google Scholar

  • Source: Ecology - nature.com

    Effect of precipitation on respiration of different reconstructed soils

    Abundant nitrite-oxidizing metalloenzymes in the mesopelagic zone of the tropical Pacific Ocean