
Hirakata Y, Oshiki M, Kuroda K, Hatamoto M, Kubota K, Yamaguchi T, et al. Effects of predation by protists on prokaryotic community function, structure, and diversity in anaerobic granular sludge. Microbes Environ. 2016;31:279–87.
Holmes DE, Giloteaux L, Orellana R, Williams KH, Robbins MJ, Lovley DR. Methane production from protozoan endosymbionts following stimulation of microbial metabolism within subsurface sediments. Front Microbiol. 2014;5:366.
Biagini GA, Finlay BJ, Lloyd D. Protozoan stimulation of anaerobic microbial activity: enhancement of the rate of terminal decomposition of organic matter. FEMS Microbiol Ecol. 1998;27:1–8.
Massana R, Pedrós-Alió C. Role of anaerobic ciliates in planktonic food webs: abundance, feeding, and impact on bacteria in the field. Appl Environ Microbiol. 1994;60:1325–34.
Saccà A, Borrego CM, Renda R, Triadó-Margarit X, Bruni V, Guglielmo L. Predation impact of ciliated and flagellated protozoa during a summer bloom of brown sulfur bacteria in a meromictic coastal lake. FEMS Microbiol ecol. 2009;70:42–53.
Santra A, Karim SA. Influence of ciliate protozoa on biochemical changes and hydrolytic enzyme profile in the rumen ecosystem. J Appl Microbiol. 2002;92:801–11.
Jousset A. Ecological and evolutive implications of bacterial defences against predators. Environ Microbiol. 2012;14:1830–43.
Martinez-Garcia M, Brazel D, Poulton NJ, Swan BK, Gomez ML, Masland D, et al. Unveiling in situ interactions between marine protists and bacteria through single cell sequencing. ISME J. 2012;6:703.
Šimek K, Chrzanowski TH. Direct and indirect evidence of size-selective grazing on pelagic bacteria by freshwater nanoflagellates. Appl Environ Microbiol. 1992;58:3715–20.
Pernthaler J. Predation on prokaryotes in the water column and its ecological implications. Nat Rev Microbiol. 2005;3:537–46.
Gonzalez JM, Sherr EB, Sherr BF. Size-selective grazing on bacteria by natural assemblages of estuarine flagellates and ciliates. Appl Environ Microbiol. 1990;56:583–9.
Wu QL, Boenigk J, Hahn MW. Successful predation of filamentous bacteria by a nanoflagellate challenges current models of flagellate bacterivory. Appl Environ Microbiol. 2004;70:332–9.
Bass D, Howe AT, Mylnikov AP, Vickerman K, Chao EE, Smallbone JE, et al. Phylogeny and classification of Cercomonadida (protozoa, Cercozoa): Cercomonas, Eocercomonas, Paracercomonas, and Cavernomonas gen. nov. Protist. 2009;160:483–521.
Finlay BJ, Fenchel T. An anaerobic protozoon, with symbiotic methanogens, living in municipal landfill material. FEMS Microbiol Lett. 1991;85:169–79.
Gill EE, Diaz-Triviño S, Barberà MJ, Silberman JD, Stechmann A, Gaston D, et al. Novel mitochondrion‐related organelles in the anaerobic amoeba Mastigamoeba balamuthi. Mol Microbiol. 2007;66:1306–20.
Yabuki A, Nakayama T, Yubuki N, Hashimoto T, ISHIDA KI, Inagaki Y. Tsukubamonas globosa n. gen., n. sp., a novel excavate flagellate possibly holding a key for the early evolution in “Discoba”. J Eukaryot Microbiol. 2011;58:319–31.
Murase J, Noll M, Frenzel P. Impact of protists on the activity and structure of the bacterial community in a rice field soil. Appl Environ Microbiol. 2006;72:5436–44.
Ohene-Adjei S, Teather RM, Ivan M, Forster RJ. Postinoculation protozoan establishment and association patterns of methanogenic archaea in the ovine rumen. Appl Environ Microbiol. 2007;73:4609–18.
Schulz S, Wagener S, Pfennig N. Utilization of various chemotrophic and phototrophic bacteria as food by the anaerobic ciliate Trimyema compressum. Eur J Protistol. 1990;26:122–31.
Yamada K, Kamagata Y, Nakamura K, Inamori Y, Nakamura I. Selectivity of food bacteria for the growth of anaerobic ciliate Trimyema compressum. Arch Microbiol. 1994;161:229–33.
Matsubayashi M, Shimada Y, Li YY, Harada H, Kubota K. Phylogenetic diversity and in situ detection of eukaryotes in anaerobic sludge digesters. PloS ONE. 2017;12:e0172888.
Simon M, López-García P, Deschamps P, Moreira D, Restoux G, Bertolino P, et al. Marked seasonality and high spatial variability of protist communities in shallow freshwater systems. ISME J. 2015;9:1941.
Prabhakaran P, Bhasi A, Ali S, Narayanan N, Balakrishnan MV, Bhaskaran K. Community dynamics and significance of anaerobic protozoa during biomethanation of lignocellulosic waste. Renew Energy. 2016;98:148–52.
Priya M, Haridas A, Manilal VB. Involvement of protozoa in anaerobic wastewater treatment process. Water Res. 2007;41:4639–45.
Shinzato N, Watanabe I, Meng XY, Sekiguchi Y, Tamaki H, Matsui T, et al. Phylogenetic analysis and fluorescence in situ hybridization detection of archaeal and bacterial endosymbionts in the anaerobic ciliate Trimyema compressum. Micro Ecol. 2007;54:627–36.
Zimorski V, Mentel M, Tielens AG, Martin WF. Energy metabolism in anaerobic eukaryotes and Earth’s late oxygenation. Free Radic Biol Med. 2019;140:279–94.
Hirakata Y, Oshiki M, Kuroda K, Hatamoto M, Kubota K, Yamaguchi T, et al. Identification and detection of prokaryotic symbionts in the ciliate Metopus from anaerobic granular sludge. Microbes Environ. 2015;30:335–8.
van Bruggen JJ, Stumm CK, Vogels GD. Symbiosis of methanogenic bacteria and sapropelic protozoa. Arch Microbiol. 1983;136:89–95.
Gast RJ, Sanders RW, Caron DA. Ecological strategies of protists and their symbiotic relationships with prokaryotic microbes. Trends Microbiol. 2009;17:563–9.
Hackstein JH, Vogels GD. Endosymbiotic interactions in anaerobic protozoa. Antonie Van Leeuwenhoek. 1997;71:151–8.
Shinzato N, Takeshita K, Kamagata Y. (2018). Methanogenic and bacterial endosymbionts of free-living anaerobic ciliates. In: Hackstein JHP, editor. (Endo)symbiotic methanogenic archaea, Microbiology monographs. vol 19. Berlin Heidelberg: Springer-Verlag; 2018. p. 37–53.
Teh YA, Dubinsky EA, Silver WL, Carlson CM. Suppression of methanogenesis by dissimilatory Fe (III)‐reducing bacteria in tropical rain forest soils: Implications for ecosystem methane flux. Glob Chang Biol. 2008;14:413–22.
Wintsche B, Jehmlich N, Popp D, Harms H, Kleinsteuber S. Metabolic adaptation of methanogens in anaerobic digesters upon trace element limitation. Front Microbiol. 2018;9:405.
Saunders EC, de Souza DP, Chambers JM, Ng M, Pyke J, McConville MJ. Use of 13C stable isotope labelling for pathway and metabolic flux analysis in Leishmania parasites. Methods Mol Biol. 2015;1201:281–96.
Creek DJ, Mazet M, Achcar F, Anderson J, Kim DH, Kamour R, et al. Probing the metabolic network in bloodstream-form Trypanosoma brucei using untargeted metabolomics with stable isotope labelled glucose. PLoS Pathog. 2015;11:e1004689.
Hirakata Y, Hatamoto M, Oshiki M, Watari T, Kuroda K, Araki N, et al. Temporal variation of eukaryotic community structures in UASB reactor treating domestic sewage as revealed by 18S rRNA gene sequencing. Sci Rep. 2019;9:1–11.
Sambrook J, Russell DW. Molecular cloning: a laboratory manual. 3rd ed. New York: Cold Spring Harbor Laboratory Press; 2001.
Wagener S, Pfennig N. Monoxenic culture of the anaerobic ciliate Trimyema compressum Lackey. Arch Microbiol. 1987;149:4–11.
Haig SJ, Schirmer M, D’amore R, Gibbs J, Davies RL, Collins G, et al. Stable-isotope probing and metagenomics reveal predation by protozoa drives E. coli removal in slow sand filters. ISME J. 2015;9:797.
Hatamoto M, Kaneshige M, Nakamura A, Yamaguchi T. Bacteroides luti sp. nov., an anaerobic, cellulolytic and xylanolytic bacterium isolated from methanogenic sludge. Int J Syst Evol Microbiol. 2014;64:1770–4.
Kujawinski EB, Farrington JW, Moffett JW. Evidence for grazing-mediated production of dissolved surface-active material by marine protists. Mar Chem. 2002;77:133–42.
Narayanan N, Priya M, Haridas A, Manilal VB. Isolation and culturing of a most common anaerobic ciliate, Metopus sp. Anaerobe. 2007;13:14–20.
Miyaoka Y, Hatamoto M, Yamaguchi T, Syutsubo K. Eukaryotic community shift in response to organic loading rate of an aerobic trickling filter (down-flow hanging sponge reactor) treating domestic sewage. Micro Ecol. 2017;73:801–14.
Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33:1870–4.
Takeshita K, Yamada T, Kawahara Y, Narihiro T, Ito M, Kamagata Y, et al. Tripartite symbiosis of an Anaerobic Scuticociliate with two hydrogenosome-associated Endosymbionts, a holospora-related Alphaproteobacterium and a Methanogenic Archaeon. Appl Environ Microbiol. 2019;24:e00854–19.
Raskin L, Poulsen LK, Noguera DR, Rittmann BE, Stahl DA. Quantification of methanogenic groups in anaerobic biological reactors by oligonucleotide probe hybridization. Appl Environ Microbiol. 1994;60:1241–8.
Krishnamurthy R. The morphology of Trichomitus batrachorum (Perty, 1852) Honigberg, 1963 from two squamate reptiles, Eryx johni and Varanus sp. Curr Sci. 1967;36:672–4.
Clarke KJ, Finlay BJ, Esteban G, Guhl BE, Embley TM. Cyclidium porcatum n. sp.: a free-living anaerobic scuticociliate containing a stable complex of hydrogenosomes, eubacteria and archaeobacteria. Eur J Protistol. 1993;29:262–70.
Fenchel T, Finlay BJ. Anaerobic free-living protozoa: growth efficiencies and the structure of anaerobic communities. FEMS Microbiol Lett. 1990;74:269–75.
Holler S, Gälle A, Pfennig N. Degradation of food compounds and growth response on different food quality by the anaerobic ciliate Trimyema compressum. Arch Microbiol. 1994;161:94–8.
Broers CA, Meijers HH, Symens JC, Stumm CK, Vogels GD, Brugerolle G. Symbiotic association of Psalteriomonas vulgaris n. spec. with Methanobacterium formicicum. Eur J Protistol. 1993;29:98–105.
Nix DE, Tyrrell R, Müller M. Pharmacodynamics of metronidazole determined by a time-kill assay for Trichomonas vaginalis. Antimicrob Agents Chemother. 1995;39:1848–52.
Mulholland MR, Morse R, Egerton T, Bernhardt PW, Filippino KC. Blooms of dinoflagellate mixotrophs in a lower Chesapeake Bay tributary: carbon and nitrogen uptake over diurnal, seasonal, and interannual timescales. Estuar Coast. 2018;41:1744–65.
Rengefors K, Pålsson C, Hansson LA, Heiberg L. Cell lysis of competitors and osmotrophy enhance growth of the bloom-forming alga Gonyostomum semen. Aquat Micro Ecol. 2008;51:87–96.
Matsunaga K, Kubota K, Harada H. Molecular diversity of eukaryotes in municipal wastewater treatment processes as revealed by 18S rRNA gene analysis. Microbe Environ. 2014;29:401–7.
Triadó‐Margarit X, Casamayor EO. High protists diversity in the plankton of sulfurous lakes and lagoons examined by 18s rRNA gene sequence analyses. Environ Microbiol Rep. 2015;7:908–17.
O’Kelly CJ, Farmer MA, Nerad TA. Ultrastructure of Trimastix pyriformis (Klebs) Bernard et al.: similarities of Trimastix species with retortamonad and jakobid flagellates. Protist. 1999;150:149–62.
Takishita K, Tsuchiya M, Kawato M, Oguri K, Kitazato H, Maruyama T. Genetic diversity of microbial eukaryotes in anoxic sediment of the saline meromictic lake Namako-ike (Japan): on the detection of anaerobic or anoxic-tolerant lineages of eukaryotes. Protist. 2007;158:51–64.
Bayané A, Guiot SR. Animal digestive strategies versus anaerobic digestion bioprocesses for biogas production from lignocellulosic biomass. Rev Environ Sci Biotechnol. 2011;10:43–62.
Müller M. Energy metabolism. Part I: anaerobic protozoa. In: J Marr, editor. Molecular medical parasitology. London: Academic Press; 2003. p. 125–39.
Müller M. The hydrogenosome. Microbiology. 1993;139:2879–89.
Gawryluk RM, Kamikawa R, Stairs CW, Silberman JD, Brown MW, Roger AJ. The earliest stages of mitochondrial adaptation to low oxygen revealed in a novel rhizarian. Curr Biol. 2016;26:2729–38.
Esteban G, Finlay BJ, Embley TM. New species double the diversity of anaerobic ciliates in a Spanish lake. FEMS Microbiol Lett. 1993;109:93–9.
Goosen NK, Van der Drift C, Stumm CK, Vogels GD. End products of metabolism in the anaerobic ciliate Trimyema compressum. FEMS Microbiol Lett. 1990;69:171–6.
Hahn MW, Moore ERB, Höfle MG. Bacterial filament formation, a defense mechanism against flagellate grazing, is growth rate controlled in bacteria of different phyla. Appl Environ Microbiol. 1999;65:25–35.
Corno G, Jürgens K. Direct and indirect effects of protist predation on population size structure of a bacterial strain with high phenotypic plasticity. Appl Environ Microbiol. 2006;72:78–86.
Caron DA, Lim EL, Miceli G, Waterbur JB, Valois FW. Grazing and utilization of chroococcoid cyanobacteria and heterotrophic bacteria by protozoa in laboratory cultures and a coastal plankton community. Mar Ecol Prog Ser. 1991;76:205–17.
Odelson DA, Breznak JA. Nutrition and growth characteristics of Trichomitopsis termopsidis, a cellulolytic protozoan from termites. Appl Environ Microbiol. 1985;49:614–21.
Skelton HM, Burkholder JM, Parrow MW. Axenic cultivation of the heterotrophic dinoflagellate Pfiesteria shumwayae and observations on feeding behavior1. J Phycol. 2008;44:1614–24.
Soldo AT, Van Wagtendonk WJ. An analysis of the nutritional requirements for fatty acids of Paramecium aurelia. J Protozool. 1967;14:596–600.
Fenchel T, Finlay BJ. Respiration rates in heterotrophic, free-living protozoa. Micro Ecol. 1983;9:99–122.
Meira BR, Lansac-Toha FM, Segovia BT, Buosi PRB, Lansac-Tôha FA, Velho LFM. The importance of herbivory by protists in lakes of a tropical floodplain system. Aquat Ecol. 2018;52:193–210.
Epstein SS, Shiaris MP. Size-selective grazing of coastal bacterioplankton by natural assemblages of pigmented flagellates, colorless flagellates, and ciliates. Micro Ecol. 1992;23:211–25.
Wu WM, Jain MK, De Macario EC, Thiele JH, Zeikus JG. Microbial composition and characterization of prevalent methanogens and acetogens isolated from syntrophic methanogenic granules. Appl Microbiol Biot. 1992;38:282–90.
Medina LE, Taylor CD, Pachiadaki MG, Henríquez-Castillo C, Ulloa O, Edgcomb VP. A review of protist grazing below the photic zone emphasizing studies of oxygen-depleted water columns and recent applications of in situ approaches. Front Mar Sci. 2017;4:105.
Gasol JM. Benthic flagellates and ciliates in fine freshwater sediments: calibration of a live counting procedure and estimation of their abundances. Microb Ecol. 1993;25:247–62.
Sonntag B, Posch T, Klammer S, Teubner K, Psenner R. Phagotrophic ciliates and flagellates in an oligotrophic, deep, alpine lake: contrasting variability with seasons and depths. Aquat Microb Ecol. 2006;43:193–207.
Baltar F, Palovaara J, Unrein F, Catala P, Horňák K, Šimek K et al. Marine bacterial community structure resilience to changes in protist predation under phytoplankton bloom conditions. ISME J. 2016;10:568–81.
Yamada T, Yamauchi T, Shiraishi K, Hugenholtz P, Ohashi A, Harada H, et al. Characterization of filamentous bacteria, belonging to candidate phylum KSB3, that are associated with bulking in methanogenic granular sludges. ISME J. 2007;1:246–55.
Source: Ecology - nature.com