in

Fragmented kelp forest canopies retain their ability to alter local seawater chemistry

  • 1.

    Doney, S. C., Fabry, V. J., Feely, R. A. & Kleypas, J. A. Ocean acidification: the other CO2 problem. Ann. Rev. Mar. Sci. 1, 169–192 (2009).

    PubMed  Google Scholar 

  • 2.

    Gazeau, F. et al. Impacts of ocean acidification on marine shelled molluscs. Mar. Biol. 160(8), 2207–2245 (2013).

    CAS  Google Scholar 

  • 3.

    Hall-Spencer, J. M. & Harvey, B. P. Ocean acidification impacts on coastal ecosystem services due to habitat degradation. Emerg. Topic. Life Sci. 3(2), 197–206 (2019).

    CAS  Google Scholar 

  • 4.

    Raven, J. A., Cockell, C. S. & De La Rocha, C. L. The evolution of inorganic carbon concentrating mechanisms in photosynthesis. Phil. Trans. Royal Soc. B. 363(1504), 2641–2650 (2008).

    CAS  Google Scholar 

  • 5.

    Cornwall, C. E. et al. Carbon-use strategies in macroalgae: differential responses to lowered pH and implications for ocean acidification. J. Phycol. 48(1), 137–144 (2012).

    CAS  PubMed  Google Scholar 

  • 6.

    Duarte, C. M. Reviews and syntheses: Hidden forests, the role of vegetated coastal habitats in the ocean carbon budget. Biogeosci. 14(2), 301–310 (2017).

    ADS  CAS  Google Scholar 

  • 7.

    Cyronak, T. et al. Short-term spatial and temporal carbonate chemistry variability in two contrasting seagrass meadows: implications for pH buffering capacities. Estuar. Coast. 41(5), 1282–1296 (2018).

    CAS  Google Scholar 

  • 8.

    Pacella, S. R., Brown, C. A., Waldbusser, G. G., Labiosa, R. G. & Hales, B. Seagrass habitat metabolism increases short-term extremes and long-term offset of CO2 under future ocean acidification. Proc. Nat. Acad. Sci. USA 115(15), 3870–3875 (2018).

    ADS  CAS  PubMed  Google Scholar 

  • 9.

    Wahl, M. et al. Macroalgae may mitigate ocean acidification effects on mussel calcification by increasing pH and its fluctuations. Limnol. Oceanogr. 63(1), 3–21 (2018).

    ADS  CAS  Google Scholar 

  • 10.

    Dayton, P. K. Experimental studies of algal canopy interactions in a sea otter-dominated kelp community at Amchitka Island Alaska. Fish. Bull. 73(2), 230–237 (1975).

    Google Scholar 

  • 11.

    Castorani, M. C., Reed, D. C. & Miller, R. J. Loss of foundation species: disturbance frequency outweighs severity in structuring kelp forest communities. Ecology 99(11), 2442–2454 (2018).

    PubMed  Google Scholar 

  • 12.

    Steneck, R. S. et al. Kelp forest ecosystems: biodiversity, stability, resilience and future. Environ. Conserv. 29(4), 436–459 (2002).

    Google Scholar 

  • 13.

    Graham, M. H., Dayton, P. K. & Erlandson, J. M. Ice ages and ecological transitions on temperate coasts. Trends Ecol. Evol. 18(1), 33–40 (2003).

    Google Scholar 

  • 14.

    Frieder, C. A., Nam, S. H., Martz, T. R. & Levin, L. A. High temporal and spatial variability of dissolved oxygen and pH in a nearshore California kelp forest. Biogeosci. 9(10), 3917–3930 (2012).

    ADS  CAS  Google Scholar 

  • 15.

    Koweek, D. A. et al. A year in the life of a central California kelp forest: physical and biological insights into biogeochemical variability. Biogeosci. 14(1), 31–44 (2017).

    ADS  CAS  Google Scholar 

  • 16.

    Pfister, C. A., Altabet, M. A. & Weigel, B. L. Kelp beds and their local effects on seawater chemistry, productivity, and microbial communities. Ecology 100(10), e02798 (2019).

    PubMed  Google Scholar 

  • 17.

    Delille, B., Borges, A. V. & Delille, D. Influence of giant kelp beds (Macrocystis pyrifera) on diel cycles of pCO2 and DIC in the Sub-Antarctic coastal area. Estuar. Coast. Shelf Sci. 81(1), 114–122 (2009).

    ADS  Google Scholar 

  • 18.

    Krause-Jensen, D. et al. Long photoperiods sustain high pH in Arctic kelp forests. Sci. Adv. 2(12), e1501938 (2016).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 19.

    Britton, D., Cornwall, C. E., Revill, A. T., Hurd, C. L. & Johnson, C. R. Ocean acidification reverses the positive effects of seawater pH fluctuations on growth and photosynthesis of the habitat-forming kelp Ecklonia radiata. Sci. Rep. 6, 26036 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 20.

    Wernberg, T., Krumhansl, K., Filbee-Dexter, K., & Pedersen, M. F. Status and trends for the world’s kelp forests. in World seas: An environmental evaluation (pp. 57–78). Academic Press, (2019).

  • 21.

    Filbee-Dexter, K. & Wernberg, T. Rise of turfs: a new battlefront for globally declining kelp forests. BioSci. 68(2), 64–76 (2018).

    Google Scholar 

  • 22.

    Krumhansl, K. A. et al. Global patterns of kelp forest change over the past half-century. Proc. Nat. Acad. Sci. USA 113(48), 13785–13790 (2016).

    CAS  PubMed  Google Scholar 

  • 23.

    Harvell, C. D. et al. Disease epidemic and a marine heat wave are associated with the continental-scale collapse of a pivotal predator (Pycnopodia helianthoides). Sci. Adv. 5(1), 1 (2019).

    ADS  Google Scholar 

  • 24.

    Di Lorenzo, E. & Mantua, N. Multi-year persistence of the 2014/15 North Pacific marine heatwave. Nat. Clim. Change. 6(11), 1042–1047 (2016).

    ADS  Google Scholar 

  • 25.

    Rogers-Bennett, L. & Catton, C. A. Marine heat wave and multiple stressors tip bull kelp forest to sea urchin barrens. Sci. Rep. 9(1), 1–9 (2019).

    CAS  Google Scholar 

  • 26.

    Smale, D. A., Burrows, M. T., Moore, P., O’Connor, N. & Hawkins, S. J. Threats and knowledge gaps for ecosystem services provided by kelp forests: a northeast Atlantic perspective. Ecol. Evol. 3(11), 4016–4038 (2013).

    PubMed  PubMed Central  Google Scholar 

  • 27.

    Reid, J. et al. The economic value of the recreational red abalone fishery in northern California. California Fish Game. 102(3), 119–130 (2016).

    Google Scholar 

  • 28.

    Stewart, H. L. et al. Differences in growth, morphology and tissue carbon and nitrogen of Macrocystis pyrifera within and at the outer edge of a giant kelp forest in California USA. Mar. Ecol. Progr. Ser. 375, 101–112 (2009).

    ADS  Google Scholar 

  • 29.

    Reinmann, A. B. & Hutyra, L. R. Edge effects enhance carbon uptake and its vulnerability to climate change in temperate broadleaf forests. Proc. Nat. Acad. Sci. USA 114(1), 107–112 (2017).

    CAS  PubMed  Google Scholar 

  • 30.

    De Paula, M. D., Costa, C. P. A. & Tabarelli, M. Carbon storage in a fragmented landscape of Atlantic forest: the role played by edge-affected habitats and emergent trees. Trop. Conserv. Sci. 4(3), 349–358 (2011).

    Google Scholar 

  • 31.

    Chaplin-Kramer, R. et al. Degradation in carbon stocks near tropical forest edges. Nature Comm. 6(1), 1–6 (2015).

    Google Scholar 

  • 32.

    Reed, D. C. & Foster, M. S. The effects of canopy shadings on algal recruitment and growth in a giant kelp forest. Ecology 65(3), 937–948 (1984).

    Google Scholar 

  • 33.

    Jackson, G. A. Nutrients and production of giant kelp, Macrocystis pyrifera, off southern California. Limnol. Oceanogr. 22, 979–995 (1977).

    ADS  CAS  Google Scholar 

  • 34.

    Gerard, V. A. In situ water motion and nutrient uptake by the giant kelp Macrocystis pyrifera. Mar. Biol. 69(1), 51–54 (1982).

    Google Scholar 

  • 35.

    Jackson, G. A. & Winant, C. D. Effect of a kelp forest on coastal currents. Continent. Shelf Res. 2(1), 75–80 (1983).

    ADS  Google Scholar 

  • 36.

    Gaylord, B. et al. Spatial patterns of flow and their modification within and around a giant kelp forest. Limnol. Oceanogr. 52(5), 1838–1852 (2007).

    ADS  Google Scholar 

  • 37.

    Rosman, J. H., Koseff, J. R., Monismith, S. G. & Grover, J. A field investigation into the effects of a kelp forest (Macrocystis pyrifera) on coastal hydrodynamics and transport. J. Geophys. Res. Oceans. 112(C2), 1 (2007).

    Google Scholar 

  • 38.

    Layton, C. et al. Resilience and stability of kelp forests: the importance of patch dynamics and environment-engineer feedbacks. PLoS ONE 14(1), 1 (2019).

    Google Scholar 

  • 39.

    Kapsenberg, L. & Hofmann, G. E. Ocean pH time-series and drivers of variability along the northern Channel Islands, California USA. Limnol. Oceanogr. 61(3), 953–968 (2016).

    ADS  CAS  Google Scholar 

  • 40.

    Takeshita, Y. et al. Including high-frequency variability in coastal ocean acidification projections. Biogeosci. 12(19), 5853–5870 (2015).

    ADS  Google Scholar 

  • 41.

    Hofmann, G. E. et al. High-frequency dynamics of ocean pH: a multi-ecosystem comparison. PLoS ONE 6(12), 1 (2011).

    Google Scholar 

  • 42.

    Dickson, A.G., Sabine, C.L., & Christian, J.R. Guide to best practices for ocean CO2 measurements. North Pacific Marine Science Organization, (2007).

  • 43.

    Yang, B., Byrne, R. H. & Lindemuth, M. Contributions of organic alkalinity to total alkalinity in coastal waters: a spectrophotometric approach. Mar. Chem. 176, 199–207 (2015).

    CAS  Google Scholar 

  • 44.

    North, W. J. Review of Macrocystis biology. Biol. Econ. Algae. 1, 447–527 (1994).

    Google Scholar 

  • 45.

    Hugler, M. & Sievert, S. M. Beyond the Calvin cycle: autotrophic carbon fixation in the ocean. Ann. Rev. Mar. Sci. 3, 261–289 (2011).

    PubMed  Google Scholar 

  • 46.

    Weigel, B. L. & Pfister, C. A. Successional dynamics and seascape-level patterns of microbial communities on the canopy-forming kelps Nereocystis luetkeana and Macrocystis pyrifera. Front. Microbiol. 10, 346 (2019).

    PubMed  PubMed Central  Google Scholar 

  • 47.

    Hauri, C. et al. Ocean acidification in the California current system. Oceanogr. 22(4), 60–71 (2009).

    Google Scholar 

  • 48.

    García-Reyes, M. & Largier, J. Observations of increased wind-driven coastal upwelling off central California. J. Geophys. Res. Oceans. 115(C4), 1 (2010).

    Google Scholar 

  • 49.

    Chan, F. et al. Persistent spatial structuring of coastal ocean acidification in the California Current System. Sci. Rep. 7(1), 1–7 (2017).

    Google Scholar 

  • 50.

    Feely, R. A. et al. The combined effects of acidification and hypoxia on pH and aragonite saturation in the coastal waters of the California current ecosystem and the northern Gulf of Mexico. Continent. Shelf Res. 152, 50–60 (2018).

    ADS  Google Scholar 

  • 51.

    Feely, R. A. et al. The combined effects of ocean acidification, mixing, and respiration on pH and carbonate saturation in an urbanized estuary. Estuar. Coast. Shelf Sci. 88(4), 442–449 (2010).

    ADS  CAS  Google Scholar 

  • 52.

    Thompson, T. L. & Glenn, E. P. Plaster standards to measure water motion. Limnol. Oceanogr. 39(7), 1768–1779 (1994).

    ADS  Google Scholar 

  • 53.

    Cornwall, C. E., Pilditch, C. A., Hepburn, C. D. & Hurd, C. L. Canopy macroalgae influence understory corallines’ metabolic control of near-surface pH and oxygen concentration. Mar. Ecol. Progr. Ser. 525, 81–95 (2015).

    ADS  CAS  Google Scholar 

  • 54.

    Dominik, C. M. & Zimmerman, R. C. Dynamics of carbon allocation in a deep-water population of the deciduous kelp Pleurophycus gardneri (Laminariales). Mar. Ecol. Progr. Ser. 309, 143–157 (2006).

    ADS  CAS  Google Scholar 

  • 55.

    Molis, M., Wessels, H., Hagen, W., Karsten, U. & Wiencke, C. Do sulphuric acid and the brown alga Desmarestia viridis support community structure in Arctic kelp patches by altering grazing impact, distribution patterns, and behaviour of sea urchins?. Polar Biol. 32(1), 71–82 (2009).

    Google Scholar 

  • 56.

    Connell, S. D. & Russell, B. D. The direct effects of increasing CO2 and temperature on non-calcifying organisms: increasing the potential for phase shifts in kelp forests. Proc. R. Soc. B. 277(1686), 1409–1415 (2010).

    PubMed  Google Scholar 

  • 57.

    Provost, E. J. et al. Climate-driven disparities among ecological interactions threaten kelp forest persistence. Glob. Chang. Biol. 23(1), 353–361 (2017).

    ADS  PubMed  Google Scholar 

  • 58.

    Bindoff, N.L., Cheung, W.W., Kairo, J.G., Arstegui, J., Guinder, V.A., Hallberg, R., Hilmi, N., Jiao, N., Karim, M.S., Levin, L. & O’Donoghue, S., Changing Ocean, Marine Ecosystems, and Dependent Communities. In: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. (2019).

  • 59.

    Hodgson, E. E. et al. Consequences of spatially variable ocean acidification in the California Current: Lower pH drives strongest declines in benthic species in southern regions while greatest economic impacts occur in northern regions. Ecol. Model. 383, 106–117 (2018).

    CAS  Google Scholar 

  • 60.

    Pauline, C. Y., Matson, P. G., Martz, T. R. & Hofmann, G. E. The ocean acidification seascape and its relationship to the performance of calcifying marine invertebrates: Laboratory experiments on the development of urchin larvae framed by environmentally relevant pCO2/pH. J Exp. Mar. Biol. Ecol. 400(1–2), 288–295 (2011).

    Google Scholar 

  • 61.

    Hamilton, S. L. et al. Species-specific responses of juvenile rockfish to elevated pCO2: from behavior to genomics. PLoS ONE 12(1), 1 (2017).

    Google Scholar 

  • 62.

    Low, N. H. & Micheli, F. Lethal and functional thresholds of hypoxia in two key benthic grazers. Mar. Ecol. Progr. Ser. 594, 165–173 (2018).

    ADS  CAS  Google Scholar 

  • 63.

    Hurd, C. L. Slow-flow habitats as refugia for coastal calcifiers from ocean acidification. J. Phycol. 51(4), 599–605 (2015).

    CAS  PubMed  Google Scholar 

  • 64.

    Kapsenberg, L. & Cyronak, T. Ocean acidification refugia in variable environments. Glob. Chang. Biol. 25(10), 3201–3214 (2019).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 65.

    Springer, Y., Hays, C., Carr, M., & Mackey, M. M. Ecology and management of the bull kelp, Nereocystis luetkeana (2007).

  • 66.

    Krause-Jensen, D. & Duarte, C. M. Substantial role of macroalgae in marine carbon sequestration. Nat. Geosci. 9(10), 737–742 (2016).

    ADS  CAS  Google Scholar 

  • 67.

    Shaw, E. C., McNeil, B. I. & Tilbrook, B. Impacts of ocean acidification in naturally variable coral reef flat ecosystems. J. Geophys. Res. Oceans 117(C3), 1 (2012).

    Google Scholar 

  • 68.

    Cornwall, C. E. et al. Diffusion boundary layers ameliorate the negative effects of ocean acidification on the temperate coralline macroalga Arthrocardia corymbosa. PLoS ONE 9(5), 1 (2014).

    Google Scholar 

  • 69.

    Bandstra, L., Hales, B. & Takahashi, T. High-frequency measurements of total CO2: method development and first oceanographic observations. Mar. Chem. 100(1–2), 24–38 (2006).

    CAS  Google Scholar 

  • 70.

    Hales, B., Chipman, D. & Takahashi, T. High-frequency measurement of partial pressure and total concentration of carbon dioxide in seawater using microporous hydrophobic membrane contactors Limnol. Oceanogr. Meth. 2, 356–364 (2004).

    Google Scholar 

  • 71.

    Lavigne H., Epitalon, J.-M. & Gattuso J.-P. Seacarb: seawater carbonate chemistry with R. R package version 3.0. https://CRAN.R-project.org/package=seacarb, (2011).

  • 72.

    R Core Team R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/, (2013).

  • 73.

    Palacios, D. M., Hazen, E. L., Schroeder, I. D. & Bograd, S. J. Modeling the temperature-nitrate relationship in the coastal upwelling domain of the California Current. J. Geophys. Res. Oceans. 118(7), 3223–3239 (2013).

    ADS  CAS  Google Scholar 

  • 74.

    Porter, E. T., Sanford, L. P. & Suttles, S. E. Gypsum dissolution is not a universal integrator of “water motion”. Limnol. Oceanogr. 45, 145–158 (2000).

    ADS  Google Scholar 

  • 75.

    Nakagawa, S. & Cuthill, I. C. Effect size, confidence interval and statistical significance: a practical guide for biologists. Biol. Rev. 82(4), 591–605 (2007).

    PubMed  PubMed Central  Google Scholar 

  • 76.

    Halsey, L. G. The reign of the p-value is over: what alternative analyses could we employ to fill the power vacuum?. Biol Lett. 15(5), 20190174 (2019).

    PubMed  PubMed Central  Google Scholar 


  • Source: Ecology - nature.com

    Flowers as parasite transmission hubs

    A meta-analysis of multiple stressors on seagrasses in the context of marine spatial cumulative impacts assessment