in

Fruit host-dependent fungal communities in the microbiome of wild Queensland fruit fly larvae

  • 1.

    Flint, H. J., Scott, K. P., Louis, P. & Duncan, S. H. The role of the gut microbiota in nutrition and health. Nat. Rev. Gastroenterol. Hepatol. 9, 577. https://doi.org/10.1038/nrgastro.2012.156 (2012).

    CAS  Article  PubMed  Google Scholar 

  • 2.

    Nicholson, J. K. et al. Host-gut microbiota metabolic interactions. Science 336, 1262–1267. https://doi.org/10.1126/science.1223813 (2012).

    ADS  CAS  Article  Google Scholar 

  • 3.

    Zhang, Z., Jiao, S., Li, X. & Li, M. Bacterial and fungal gut communities of Agrilus mali at different developmental stages and fed different diets. Sci. Rep. 8, 15634 (2018).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 4.

    Engel, P. & Moran, N. A. The gut microbiota of insects–diversity in structure and function. FEMS Microbiol. Rev. 37, 699–735 (2013).

    CAS  PubMed  Article  Google Scholar 

  • 5.

    Paine, T., Raffa, K. & Harrington, T. Interactions among scolytid bark beetles, their associated fungi, and live host conifers. Annu. Rev. Entomol. 42, 179–206 (1997).

    CAS  PubMed  Article  Google Scholar 

  • 6.

    Yun, J. H. et al. Insect gut bacterial diversity determined by environmental habitat, diet, developmental stage, and phylogeny of host. Appl. Environ. Microbiol. 80, 5254–5264 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 7.

    Fukatsu, T. & Ishikawa, H. A novel eukaryotic extracellular symbiont in an aphid, Astegopteryx styraci (Homoptera, Aphididae, Hormaphidinae). J. Insect Physiol. 38, 765–773 (1992).

    Article  Google Scholar 

  • 8.

    Malacrinò, A., Schena, L., Campolo, O., Laudani, F. & Palmeri, V. Molecular analysis of the fungal microbiome associated with the olive fruit fly Bactrocera oleae. Fungal Ecol. 18, 67–74 (2015).

    Article  Google Scholar 

  • 9.

    Vega, F. E. & Blackwell, M. Insect-Fungal Associations: Ecology and Evolution (Oxford University Press, Oxford, 2005).

    Google Scholar 

  • 10.

    Stefanini, I. Yeast-insect associations: it takes guts. Yeast 35, 315–330 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 11.

    Boyce, A. Bionomics of the walnut husk fly, Rhagoletis completa. Hilgardia 8, 363–579 (1934).

    Article  Google Scholar 

  • 12.

    Fanson, B. G. & Taylor, P. W. Protein: carbohydrate ratios explain life span patterns found in Queensland fruit fly on diets varying in yeast: sugar ratios. Age 34, 1361–1368 (2012).

    CAS  PubMed  Article  Google Scholar 

  • 13.

    Moadeli, T., Mainali, B., Ponton, F. & Taylor, P. Evaluation of yeasts in gel larval diet for Queensland fruit fly, Bactrocera tryoni. J. Appl. Entomol. 142, 679–688 (2018).

    CAS  Article  Google Scholar 

  • 14.

    Nash, W. J. & Chapman, T. Effect of dietary components on larval life history characteristics in the Medfly (Ceratitis capitata: Diptera, Tephritidae). PLoS ONE 9, e86029 (2014).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 15.

    Nestel, D. & Nemny-Lavy, E. Nutrient balance in medfly, Ceratitis capitata, larval diets affects the ability of the developing insect to incorporate lipid and protein reserves. Entomol. Exp. Appl. 126, 53–60. https://doi.org/10.1111/j.1570-7458.2007.00639.x (2008).

    CAS  Article  Google Scholar 

  • 16.

    Nestel, D., Nemny-Lavy, E. & Chang, C. L. Lipid and protein loads in pupating larvae and emerging adults as affected by the composition of Mediterranean fruit fly (Ceratitis capitata) meridic larval diets. Arch. Insect Biochem. Physiol. 56, 97–109. https://doi.org/10.1002/arch.20000 (2004).

    CAS  Article  PubMed  Google Scholar 

  • 17.

    Mori, B. A. et al. Enhanced yeast feeding following mating facilitates control of the invasive fruit pest Drosophila suzukii. J. Appl. Ecol. 54, 170–177. https://doi.org/10.1111/1365-2664.12688 (2017).

    Article  Google Scholar 

  • 18.

    Stamps, J. A., Yang, L. H., Morales, V. M. & Boundy-Mills, K. L. Drosophila regulate yeast density and increase yeast community similarity in a natural substrate. PLoS ONE 7, e42238. https://doi.org/10.1371/journal.pone.0042238 (2012).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 19.

    Anagnostou, C., Dorsch, M. & Rohlfs, M. Influence of dietary yeasts on Drosophila melanogaster life-history traits. Entomol. Exp. Appl. 136, 1–11. https://doi.org/10.1111/j.1570-7458.2010.00997.x (2010).

    Article  Google Scholar 

  • 20.

    Rohlfs, M. & Kürschner, L. Saprophagous insect larvae, Drosophila melanogaster, profit from increased species richness in beneficial microbes. J. Appl. Entomol. 134, 667–671. https://doi.org/10.1111/j.1439-0418.2009.01458.x (2010).

    Article  Google Scholar 

  • 21.

    Menezes, C. et al. A Brazilian social bee must cultivate fungus to survive. Curr. Biol. 25, 2851–2855. https://doi.org/10.1016/j.cub.2015.09.028 (2015).

    CAS  Article  PubMed  Google Scholar 

  • 22.

    Yun, J. H., Jung, M. J., Kim, P. S. & Bae, J. W. Social status shapes the bacterial and fungal gut communities of the honey bee. Sci. Rep. 8, 2019. https://doi.org/10.1038/s41598-018-19860-7 (2018).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 23.

    DeLeon-Rodriguez, C. M. & Casadevall, A. Cryptococcus neoformans: tripping on acid in the phagolysosome. Front. Microbiol. 7, 164. https://doi.org/10.3389/fmicb.2016.00164 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • 24.

    Hajek, A. & St. Leger, R. Interactions between fungal pathogens and insect hosts. Annu. Rev. Entomol. 39, 293–322. https://doi.org/10.1146/annurev.en.39.010194.001453 (1994).

    Article  Google Scholar 

  • 25.

    Lu, H. L., Wang, J. B., Brown, M. A., Euerle, C. & Leger, R. J. S. Identification of Drosophila mutants affecting defense to an entomopathogenic fungus. Sci. Rep. 5, 12350 (2015).

    ADS  PubMed  PubMed Central  Article  Google Scholar 

  • 26.

    Almeida, J. E., Batista Filho, A., Oliveira, F. C. & Raga, A. Pathogenicity of the entomopathogenic fungi and nematode on medfly Ceratitis capitata (Wied.)(Diptera: Tephritidae). BioAssay https://doi.org/10.14295/BA.v2 (2007).

    Article  Google Scholar 

  • 27.

    Lacey, L. A., Frutos, R., Kaya, H. & Vail, P. Insect pathogens as biological control agents: do they have a future?. Biol. Control 21, 230–248 (2001).

    Article  Google Scholar 

  • 28.

    Ortu, S., Cocco, A. & Dau, R. Evaluation of the entomopathogenic fungus Beauveria bassiana strain ATCC 74040 for the management of Ceratitis capitata. B. Insectol. 62, 245–252 (2009).

    Google Scholar 

  • 29.

    Quesada-Moraga, E., Ruiz-García, A. & Santiago-Alvarez, C. Laboratory evaluation of entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae against puparia and adults of Ceratitis capitata (Diptera: Tephritidae). J. Econ. Entomol. 99, 1955–1966 (2006).

    CAS  PubMed  Article  Google Scholar 

  • 30.

    Clarke, A. R., Powell, K. S., Weldon, C. W. & Taylor, P. W. The ecology of Bactrocera tryoni (Diptera: Tephritidae): what do we know to assist pest management?. Ann. Appl. Biol. 158, 26–54 (2011).

    Article  Google Scholar 

  • 31.

    Dominiak, B. C. & Daniels, D. Review of the past and present distribution of Mediterranean fruit fly (Ceratitis capitata Wiedemann) and Queensland fruit fly (Bactrocera tryoni Froggatt) in Australia. Aust. J. Entomol. 51, 104–115 (2012).

    Article  Google Scholar 

  • 32.

    Sutherst, R. W., Collyer, B. S. & Yonow, T. The vulnerability of Australian horticulture to the Queensland fruit fly, Bactrocera (Dacus) tryoni, under climate change. Aust. J. Agric. Res. 51, 467–480 (2000).

    Article  Google Scholar 

  • 33.

    Dominiak, B., Westcott, A. & Barchia, I. Release of sterile Queensland fruit fly, Bactrocera tryoni (Froggatt) (Diptera: Tephritidae), at Sydney, Australia. Aust. J. Exp. Agric. 43, 519–528 (2003).

    Article  Google Scholar 

  • 34.

    Deutscher, A. T. et al. Near full-length 16S rRNA gene next-generation sequencing revealed Asaia as a common midgut bacterium of wild and domesticated Queensland fruit fly larvae. Microbiome 6, 85 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 35.

    Drew, R., Courtice, A. & Teakle, D. Bacteria as a natural source of food for adult fruit flies (Diptera: Tephritidae). Oecologia 60, 279–284. https://doi.org/10.1007/BF00376839 (1983).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 36.

    Lloyd, A., Drew, R., Teakle, D. & Hayward, A. Bacteria associated with some Dacus species (Diptera: Tephritidae) and their host fruit in Queensland. Aust. J. Biol. Sci. 39, 361–368 (1986).

    Article  Google Scholar 

  • 37.

    Morrow, J. L., Frommer, M., Shearman, D. C. & Riegler, M. The microbiome of field-caught and laboratory-adapted Australian tephritid fruit fly species with different host plant use and specialisation. Microb. Ecol. 70, 498–508 (2015).

    CAS  PubMed  Article  Google Scholar 

  • 38.

    Murphy, K. M., Teakle, D. S. & MacRae, I. C. Kinetics of colonization of adult Queensland fruit flies (Bactrocera tryoni) by dinitrogen-fixing alimentary tract bacteria. Appl. Environ. Microbiol. 60, 2508–2517 (1994).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 39.

    Thaochan, N., Drew, R., Hughes, J., Vijaysegaran, S. & Chinajariyawong, A. Alimentary tract bacteria isolated and identified with API-20E and molecular cloning techniques from Australian tropical fruit flies Bactrocera cacuminata and B. tryoni. J. Insect Sci. 10, 131 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 40.

    Majumder, R., Sutcliffe, B., Taylor, P. W. & Chapman, T. A. Next-Generation Sequencing reveals relationship between the larval microbiome and food substrate in the polyphagous Queensland fruit fly. Sci. Rep. 9, 1–12 (2019).

    Article  CAS  Google Scholar 

  • 41.

    Shuttleworth, L. A., Khan, M. A. M., Collins, D., Osborne, T. & Reynolds, O. L. Wild bacterial probiotics fed to larvae of mass-reared Queensland fruit fly [Bactrocera tryoni (Froggatt)] do not impact long-term survival, mate selection, or locomotor activity. Insect Sci. 27, 745–755 (2020).

    CAS  PubMed  Article  Google Scholar 

  • 42.

    Shuttleworth, L. A. et al. A walk on the wild side: gut bacteria fed to mass-reared larvae of Queensland fruit fly [Bactrocera tryoni (Froggatt)] influence development. BMC Biotechnol. 19, 1–11 (2019).

    Article  CAS  Google Scholar 

  • 43.

    Woruba, D. N. et al. Diet and irradiation effects on the bacterial community composition and structure in the gut of domesticated teneral and mature Queensland fruit fly, Bactrocera tryoni (Diptera: Tephritidae). BMC Microbiol. 19, 281 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 44.

    Majumder, R., Sutcliffe, B., Chapman, T. A. & Taylor, P. W. Microbiome of the Queensland fruit fly through metamorphosis. Microorganisms 8, 795 (2020).

    PubMed Central  Article  PubMed  Google Scholar 

  • 45.

    Deutscher, A. T., Reynolds, O. L. & Chapman, T. A. Yeast: an overlooked component of Bactrocera tryoni (Diptera: Tephritidae) larval gut microbiota. J. Econ. Entomol. 110, 298–300 (2016).

    Google Scholar 

  • 46.

    Piper, A. M., Farnier, K., Linder, T., Speight, R. & Cunningham, J. P. Two gut-associated yeasts in a tephritid fruit fly have contrasting effects on adult attraction and larval survival. J. Chem. Ecol. 43, 891–901 (2017).

    CAS  PubMed  Article  Google Scholar 

  • 47.

    Toju, H., Tanabe, A. S., Yamamoto, S. & Sato, H. High-coverage ITS primers for the DNA-based identification of ascomycetes and basidiomycetes in environmental samples. PLoS ONE 7, e40863 (2012).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 48.

    Schmidt, P. A. et al. Illumina metabarcoding of a soil fungal community. Soil Biol. Biochem. 65, 128–132 (2013).

    CAS  Article  Google Scholar 

  • 49.

    Yun, J. H., Jung, M. J., Kim, P. S. & Bae, J. W. Social status shapes the bacterial and fungal gut communities of the honey bee. Sci. Rep. 8, 1–11 (2018).

    Article  CAS  Google Scholar 

  • 50.

    Ravenscraft, A., Berry, M., Hammer, T., Peay, K. & Boggs, C. Structure and function of the bacterial and fungal gut microbiota of Neotropical butterflies. Ecol. Monogr. 89, e01346 (2019).

    Article  Google Scholar 

  • 51.

    Mohammed, W. S., Ziganshina, E. E., Shagimardanova, E. I., Gogoleva, N. E. & Ziganshin, A. M. Comparison of intestinal bacterial and fungal communities across various xylophagous beetle larvae (Coleoptera: Cerambycidae). Sci. Rep. 8, 10073 (2018).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 52.

    Sutcliffe, B. et al. Diverse fungal lineages in subtropical ponds are altered by sediment-bound copper. Fungal Ecol. 34, 28–42 (2018).

    Article  Google Scholar 

  • 53.

    Hamby, K. A., Hernández, A., Boundy-Mills, K. & Zalom, F. G. Associations of yeasts with spotted-wing Drosophila (Drosophila suzukii; Diptera: Drosophilidae) in cherries and raspberries. Appl. Environ. Microbiol. 78, 4869–4873 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 54.

    Kurtzman, C., Fell, J. W. & Boekhout, T. The Yeasts: A Taxonomic Study (Elsevier, Amsterdam, 2011).

    Google Scholar 

  • 55.

    Marchesi, J. R. Prokaryotic and eukaryotic diversity of the human gut. Adv. Appl. Microbiol. 72, 43–62 (2010).

    PubMed  Article  Google Scholar 

  • 56.

    Xiang, H. et al. Microbial communities in the larval midgut of laboratory and field populations of cotton bollworm (Helicoverpa armigera). Can. J. Microbiol. 52, 1085–1092 (2006).

    CAS  PubMed  Article  Google Scholar 

  • 57.

    Kudo, R., Masuya, H., Endoh, R., Kikuchi, T. & Ikeda, H. Gut bacterial and fungal communities in ground-dwelling beetles are associated with host food habit and habitat. ISME J. 13, 676 (2019).

    CAS  PubMed  Article  Google Scholar 

  • 58.

    Broderick, N. A., Raffa, K. F., Goodman, R. M. & Handelsman, J. Census of the bacterial community of the gypsy moth larval midgut by using culturing and culture-independent methods. Appl. Environ. Microbiol. 70, 293–300 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 59.

    Colman, D. R., Toolson, E. C. & Takacs-Vesbach, C. Do diet and taxonomy influence insect gut bacterial communities?. Mol. Ecol. 21, 5124–5137 (2012).

    CAS  PubMed  Article  Google Scholar 

  • 60.

    Quan, A. S. & Eisen, M. B. The ecology of the Drosophila-yeast mutualism in wineries. PLoS ONE 13, e0196440 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 61.

    Starmer, W. T. & Lachance, M. A. Yeast ecology. Yeasts 7, 65–83 (2011).

    Article  Google Scholar 

  • 62.

    Molnárová, J., Vadkertiová, R. & Stratilová, E. Extracellular enzymatic activities and physiological profiles of yeasts colonizing fruit trees. J. Basic Microbiol. 54, S74–S84 (2014).

    PubMed  Article  CAS  Google Scholar 

  • 63.

    White, I. M. & Elson-Harris, M. M. Fruit Flies of Economic Significance: Their Identification and Bionomics (CAB International, Wallingford, 1992).

    Google Scholar 

  • 64.

    Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 3, 294–299 (1994).

    CAS  PubMed  Google Scholar 

  • 65.

    Benson, D. A. et al. GenBank. Nucleic Acids Res. 46, D41–D47 (2018).

    CAS  PubMed  Article  Google Scholar 

  • 66.

    Australia, P. H. The Australian Handbook for the Identification of Fruit Flies. Vol. Version 1.0 (ed. Woods N) 234 (2011).

  • 67.

    Gardes, M. & Bruns, T. D. ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts. Mol. Ecol. 2, 113–118 (1993).

    CAS  PubMed  Article  Google Scholar 

  • 68.

    Hoggard, M. et al. Characterizing the human mycobiota: a comparison of small subunit rRNA, ITS1, ITS2, and large subunit rRNA genomic targets. Front. Microbiol. 9, 2208 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 69.

    Fouts, D. E. et al. Next generation sequencing to define prokaryotic and fungal diversity in the bovine rumen. PLoS ONE 7, e48289 (2012).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 70.

    Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 71.

    Greenfield, P. Greenfield Hybrid Analysis Pipeline (GHAP) v1 (CSIRO, Canberra, 2017).

    Google Scholar 

  • 72.

    Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).

    CAS  PubMed  Article  Google Scholar 

  • 73.

    Maidak, B. L. et al. The ribosomal database project (RDP). Nucleic Acids Res. 24, 82–85 (1996).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 74.

    Deshpande, V. et al. Fungal identification using a Bayesian classifier and the Warcup training set of internal transcribed spacer sequences. Mycologia 108, 1–5 (2016).

    PubMed  Article  Google Scholar 

  • 75.

    Nilsson, R. H. et al. The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 47, D259–D264 (2019).

    CAS  PubMed  Article  Google Scholar 

  • 76.

    Clarke, K. & Ainsworth, M. A method of linking multivariate community structure to environmental variables. Mar. Ecol. Prog. Ser. 92, 205–205 (1993).

    ADS  Article  Google Scholar 


  • Source: Ecology - nature.com

    Comparing the benefits of scooter-sharing vs. bike-sharing

    Integrative ecological and molecular analysis indicate high diversity and strict elevational separation of canopy beetles in tropical mountain forests