in

Genassemblage 2.0 software facilitates conservation of genetic variation of captively propagated species

  • 1.

    Lacy, R. C. Importance of genetic variation to the viability of mammalian populations. J. Mamm. 78, 320–335 (1997).

    Article  Google Scholar 

  • 2.

    Hansen, M. M., Villanueva, B., Nielsen, E. E. & Bekkevold, D. Investigating the genetics of populations. In The Atlantic Salmon: Genetics, Conservation and Management (eds Verspoor, E. et al.) 86–114 (Blackwell Publishing, Hoboken, 2008).

    Google Scholar 

  • 3.

    Hallerman, E. Inbreeding. In Population Genetics: Principles and Applications for Fisheries Scientists (ed. Hallerman, E. M.) (American Fisheries Society, Bethesda, 2003).

    Google Scholar 

  • 4.

    Koljonen, M. L., Jansson, H., Paaver, T., Vasin, O. & Koskiniemi, J. Phylogeographic lineages and differentiation pattern of Atlantic salmon in the Baltic Sea with management implications. Can. J. Fish. Aquat. Sci. 56, 1766–1780 (1999).

    Article  Google Scholar 

  • 5.

    Koljonen, M. L., Tähtinen, J., Säisä, M. & Koskiniemi, J. Maintenance of genetic diversity of Atlantic salmon (Salmo salar) by captive breeding programs and the geographic distribution of microsatellite variation. Aquaculture 212, 69–92 (2002).

    CAS  Article  Google Scholar 

  • 6.

    Verspoor, E. et al. Population structure in the Atlantic salmon: Insights from 40 years of research into genetic protein variation. J. Fish. Biol. 67(Suppl A), 3–55 (2005).

    CAS  Article  Google Scholar 

  • 7.

    Bryant, E. H., McCommas, S. A. & Combs, L. M. The effect of an experimental bottleneck upon quantitative genetic variation in the housefly. Genetics 114, 1191–1211 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 8.

    Kim, J. E., Withler, R. E., Ritland, C. & Cheng, K. M. Genetic variation within and between domesticated Chinook salmon, Oncorhynchus tschawytscha, strains and their progenitor populations. Dev. Environ. Biol. Fish. 23, 371–378 (2004).

    Article  Google Scholar 

  • 9.

    Miller, L. M. & Kapuscinski, A. R. Genetic guidelines for hatchery supplementation programs. In Population Genetics: Principles and Applications for Fisheries Scientists (ed. Hallerman, E. M.) 329–355 (American Fisheries Society, Bethesda, 2003).

    Google Scholar 

  • 10.

    Kusznierz, J., Paśko, Ł & Tagayev, D. On the variation and distribution of the lake minnow, Eupallasella percnurus (Pall.). Arch. Pol. Fish. 19, 161–166 (2011).

    Article  Google Scholar 

  • 11.

    Sowińska-Świerkosz, B. & Kolejko, M. Extinction risk to lake minnow (Eupallasella percnurus) due to habitat loss: Eastern Poland case study. Environ. Monit. Assess. 191, 571 (2019).

    Article  Google Scholar 

  • 12.

    Kaczmarczyk, D., Wolnicki, J., Kamiński, R., Sikorska, J. & Radtke, G. Genetic variability of the endangered fish lake minnow, Eupallasella percnurus (Pall.) in populations newly established by translocations in Poland. in XVI European Congress of Ichthyology Lausanne, Swiss, 2–6 September 2019. Frontier of Marine Science, Conference Abstract: XVI European Congress of Ichthyology, 92–93.

  • 13.

    Wolnicki, J., Kaminski, R., Sikorska, J. & Kaczmarczyk, D. Occurrence and active protection of the endangered cyprinid fish species, lake minnow Eupallasella percnurus (Pall.), in Poland. in XVI European Congress of Ichthyology Lausanne, Swiss, 2–6 September 2019. Frontier of Marine Science, Conference Abstract: XVI European Congress of Ichthyology, 206–208.

  • 14.

    Attard, C. et al. A novel holistic framework for genetic-based captive-breeding and reintroduction programs. Conserv. Biol. 30, 1060–1069 (2016).

    CAS  Article  Google Scholar 

  • 15.

    Kaczmarczyk, D. Techniques based on the polymorphism of microsatellite DNA as tools for conservation of endangered populations. Appl. Ecol. Environ. Res. 17, 1599–1615 (2019).

    Article  Google Scholar 

  • 16.

    Kaczmarczyk, D. & Wolnicki, J. Genetic diversity of the endangered cyprinid fish lake minnow Eupallasella percnurus in Poland and its implications for conservation. PLoS ONE 12, 1–16 (2016).

    Google Scholar 

  • 17.

    Dimsoski, P., Toth, G. P. & Bagley, M. J. Microsatellite characterization in central stoneroller Campostoma anomalum (Pisces: Cyprinidae). Mol. Ecol. 9, 2187–2189 (2000).

    CAS  Article  Google Scholar 

  • 18.

    Holmen, J., Vøllestad, L. A., Jakobsen, K. S. & Primmer, C. R. Cross-species amplification of zebrafish and central stoneroller microsatellite loci in six other cyprinids. J. Fish. Biol. 66, 851–859 (2005).

    CAS  Article  Google Scholar 

  • 19.

    Aksoy, S. et al. Permanent genetic resources. Mol. Ecol. Res. 13, 341–343 (2013).

    Article  Google Scholar 

  • 20.

    Dieringer, D. & Schlötterer, C. Microsatellite analyzer (MSA): A platform independent analysis tool for large microsatellite data sets. Mol. Ecol. Notes 3, 167–169 (2003).

    CAS  Article  Google Scholar 

  • 21.

    Kaczmarczyk, D. & Fopp-Bayat, D. Assemblage of spawning pairs based on their individual genetic profiles—As tool for maintaining genetic variation within sturgeon populations. Aquacult. Res. 44, 677–682 (2013).

    Article  Google Scholar 

  • 22.

    Ruzzante, D. E. A comparison of several measures of genetic distance and population structure with microsatellite data: Bias and sampling variance. Can. J. Fish. Aquat. Sci. 55, 1–14 (1998).

    Article  Google Scholar 

  • 23.

    Kaminski, R., Kusznierz, J., Myszkowski, L. & Wolnicki, J. The first attempt to artificially reproduce the endangered cyprinid lake minnow Eupallasella percnurus (Pallas). Aquacult. Int. 12, 3–10 (2004).

    Article  Google Scholar 

  • 24.

    Wolnicki, J., Kamiński, R. & Sikorska, J. Occurrence, threats and active protection of the lake minnow, Eupallasella percnurus (Pall.), in Mazowieckie Voivodeship in Poland. Arch. Pol. Fish. 19, 209–216. https://doi.org/10.2478/v10086-011-0026-3 (2011).

    Article  Google Scholar 

  • 25.

    Liu, D. et al. Low genetic diversity in broodstocks of endangered Chinese sucker, Myxocyprinus asiaticus: Implications for artificial propagation and conservation. ZooKeys 792, 117–132 (2018).

    Article  Google Scholar 

  • 26.

    Hariyono, D. N. H. et al. Genetic diversity and phylogenetic relationship analyzed by microsatellite markers in eight Indonesian local duck populations. Asian-Australas J. Anim. Sci. 32, 31–37 (2019).

    Article  Google Scholar 

  • 27.

    Ryman, N. & Laikre, L. Effects of supportive breeding on the genetically effective population size. Conserv. Biol. 5, 325–329 (1991).

    Article  Google Scholar 

  • 28.

    Hansen, M. M., Nielsen, E. E., Ruzzante, D. E., Bouza, C. & Mensberg, K. Genetic monitoring of supportive breeding in brown trout Salmo trutta L., using microsatellite DNA markers. Can. J. Fish. Aquat. Sci. 57, 2130–2139 (2000).

    Article  Google Scholar 

  • 29.

    Bartley, D., Bagley, M., Gall, G. & Bentley, B. Use of linkage disequilibrium data to estimate effective size of hatchery and natural fish populations. Conserv. Biol. 6, 365–375 (1992).

    Article  Google Scholar 

  • 30.

    Hara, M. & Sekino, M. Efficient detection of parentage in a cultured Japanese flounder Paralichthys olivaceus using microsatellite DNA marker. Aquaculture 217, 107–114 (2003).

    CAS  Article  Google Scholar 

  • 31.

    Sekino, M. et al. Microsatellite-based pedigree tracing in a Japanese flounder Paralichthys olivaceus hatchery strain: Implications for hatchery management related to stock enhancement program. Aquaculture 221, 255–263 (2003).

    Article  Google Scholar 

  • 32.

    Brown, R. C., Woolliams, J. A. & McAndrew, B. J. Factors influencing effective population size in commercial populations of gilthead seabream, Sparus aurata. Aquaculture 247, 219–225 (2005).

    Article  Google Scholar 

  • 33.

    Frost, L. A., Evans, B. S. & Jerry, D. R. Loss of genetic diversity due to hatchery culture practices in barramundi (Lates calcarifer). Aquaculture 261, 1056–1064 (2006).

    CAS  Article  Google Scholar 

  • 34.

    Loughnan, S. R. et al. Broodstock contribution after mass spawning and size grading in barramundi (Lates calcarifer, Bloch). Aquaculture 404–405, 139–149 (2013).

    Article  Google Scholar 

  • 35.

    Herlin, M. et al. Analysis of the parental contribution to a group of fry from a single day of spawning from a commercial Atlantic cod (Gadus morhua) breeding tank. Aquaculture 274, 218–224 (2008).

    Article  Google Scholar 

  • 36.

    Kaczmarczyk, D., Dobosz, S. & Kaczor, A. Prediction of genetic variation in stocks of offspring and its correlation with viability and growth rate. J. World Aquacult. Soc. 1, 1–8 (2017).

    Google Scholar 


  • Source: Ecology - nature.com

    Deep learning-assisted comparative analysis of animal trajectories with DeepHL

    Environmental and microbial controls on microbial necromass recycling, an important precursor for soil carbon stabilization