in

Genome-scale reconstruction of Paenarthrobacter aurescens TC1 metabolic model towards the study of atrazine bioremediation

  • 1.

    Centner, T. J. & Heric, D. C. Anti-community state pesticide preemption laws prevent local governments from protecting people from harm. Int. J. Agric. Sustain. 17, 118–126. https://doi.org/10.1080/14735903.2019.1568814 (2019).

    Article  Google Scholar 

  • 2.

    Lopez-Pacheco, I. Y. et al. Anthropogenic contaminants of high concern: Existence in water resources and their adverse effects. Sci. Total Environ. 690, 1068–1088. https://doi.org/10.1016/j.scitotenv.2019.07.052 (2019).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 3.

    Abubucker, S. et al. Metabolic reconstruction for metagenomic data and its application to the human microbiome. PLoS Comput. Biol. 8, e1002358. https://doi.org/10.1371/journal.pcbi.1002358 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 4.

    Rani, M., Shanker, U. & Jassal, V. Recent strategies for removal and degradation of persistent & toxic organochlorine pesticides using nanoparticles: A review. J. Environ. Manage. 190, 208–222. https://doi.org/10.1016/j.jenvman.2016.12.068 (2017).

    CAS  Article  PubMed  Google Scholar 

  • 5.

    Arcuri, A. & Hendlin, Y. H. The chemical anthropocene: Glyphosate as a case study of pesticide exposures. King’s Law J. 30, 234–253. https://doi.org/10.1080/09615768.2019.1645436 (2019).

    Article  Google Scholar 

  • 6.

    Agency, U. S. E. P. Atrazine—Background and Updates. https://www.epa.gov/ingredients-used-pesticide-products/atrazine-background-and-updates.

  • 7.

    Kastner, M. & Miltner, A. Application of compost for effective bioremediation of organic contaminants and pollutants in soil. Appl. Microbiol. Biotechnol. 100, 3433–3449. https://doi.org/10.1007/s00253-016-7378-y (2016).

    CAS  Article  PubMed  Google Scholar 

  • 8.

    Kanissery, R. G. & Sims, G. K. Biostimulation for the enhanced degradation of herbicides in soil. Appl. Environ. Soil Sci. 2011, 10. https://doi.org/10.1155/2011/843450 (2011).

    CAS  Article  Google Scholar 

  • 9.

    Viegas, C. A. et al. Evaluating formulation and storage of Arthrobacter aurescens strain TC1 as a bioremediation tool for terbuthylazine contaminated soils: Efficacy on abatement of aquatic ecotoxicity. Sci. Total Environ. 668, 714–722. https://doi.org/10.1016/j.scitotenv.2019.02.355 (2019).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 10.

    Perez-Garcia, O., Lear, G. & Singhal, N. Metabolic network modeling of microbial interactions in natural and engineered environmental systems. Front. Microbiol. 7, 673. https://doi.org/10.3389/fmicb.2016.00673 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • 11.

    Nilsson, T., Rova, M. & Backlund, A. S. Microbial metabolism of oxochlorates: A bioenergetic perspective. Biochim. Biophys. Acta 1827, 189–197. https://doi.org/10.1016/j.bbabio.2012.06.010 (2013).

    CAS  Article  PubMed  Google Scholar 

  • 12.

    Mani, D. & Kumar, C. Biotechnological advances in bioremediation of heavy metals contaminated ecosystems: An overview with special reference to phytoremediation. Int. J. Environ. Sci. Technol. 11, 843–872. https://doi.org/10.1007/s13762-013-0299-8 (2013).

    CAS  Article  Google Scholar 

  • 13.

    Shah, J. & Dahanukar, N. Bioremediation of organometallic compounds by bacterial degradation. Indian J. Microbiol. 52, 300–304. https://doi.org/10.1007/s12088-011-0223-1 (2012).

    CAS  Article  PubMed  Google Scholar 

  • 14.

    Megharaj, M., Ramakrishnan, B., Venkateswarlu, K., Sethunathan, N. & Naidu, R. Bioremediation approaches for organic pollutants: A critical perspective. Environ. Int. 37, 1362–1375. https://doi.org/10.1016/j.envint.2011.06.003 (2011).

    CAS  Article  PubMed  Google Scholar 

  • 15.

    Nousiainen, A. O. et al. Bioremediation strategies for removal of residual atrazine in the boreal groundwater zone. Appl. Microbiol. Biotechnol. 99, 10249–10259. https://doi.org/10.1007/s00253-015-6828-2 (2015).

    CAS  Article  PubMed  Google Scholar 

  • 16.

    Sagarkar, S. et al. Soil mesocosm studies on atrazine bioremediation. J. Environ. Manag. 139, 208–216. https://doi.org/10.1016/j.jenvman.2014.02.016 (2014).

    CAS  Article  Google Scholar 

  • 17.

    Fan, X. & Song, F. Bioremediation of atrazine: Recent advances and promises. J. Soils Sediments 14, 1727–1737. https://doi.org/10.1007/s11368-014-0921-5 (2014).

    CAS  Article  Google Scholar 

  • 18.

    Singh, B. & Singh, K. Microbial degradation of herbicides. Crit. Rev. Microbiol. 42, 245–261. https://doi.org/10.3109/1040841X.2014.929564 (2016).

    CAS  Article  PubMed  Google Scholar 

  • 19.

    Adams, G. O., Fufeyin, P. T., Okoro, S. E. & Ehinomen, I. Bioremediation, biostimulation and bioaugmention: A review. Int. J. Environ. Bioremed. Biodegrad. 3, 28–39 (2015).

    CAS  Google Scholar 

  • 20.

    Zhao, X., Bai, S., Li, C., Yang, J. & Ma, F. Bioaugmentation of atrazine removal in constructed wetland: Performance, microbial dynamics, and environmental impacts. Biores. Technol. 289, 121618. https://doi.org/10.1016/j.biortech.2019.121618 (2019).

    CAS  Article  Google Scholar 

  • 21.

    Wang, Q. & Xie, S. Isolation and characterization of a high-efficiency soil atrazine-degrading Arthrobacter sp. strain. Int. Biodeteriorat. Biodegrad. 71, 61–66. https://doi.org/10.1016/j.ibiod.2012.04.005 (2012).

    CAS  Article  Google Scholar 

  • 22.

    Fang, H., Lian, J., Wang, H., Cai, L. & Yu, Y. Exploring bacterial community structure and function associated with atrazine biodegradation in repeatedly treated soils. J. Hazard. Mater. 286, 457–465. https://doi.org/10.1016/j.jhazmat.2015.01.006 (2015).

    CAS  Article  PubMed  Google Scholar 

  • 23.

    Zhang, Y. et al. Metabolic ability and individual characteristics of an atrazine-degrading consortium DNC5. J. Hazard Mater. 237–238, 376–381. https://doi.org/10.1016/j.jhazmat.2012.08.047 (2012).

    CAS  Article  PubMed  Google Scholar 

  • 24.

    Strong, L. C., Rosendahl, C., Johnson, G., Sadowsky, M. J. & Wackett, L. P. Arthrobacter aurescens TC1 metabolizes diverse s-triazine ring compounds. Appl. Environ. Microbiol. 68, 5973–5980 (2002).

    CAS  Article  Google Scholar 

  • 25.

    Sagarkar, S. et al. Monitoring bioremediation of atrazine in soil microcosms using molecular tools. Environ. Pollut. 172, 108–115. https://doi.org/10.1016/j.envpol.2012.07.048 (2013).

    CAS  Article  PubMed  Google Scholar 

  • 26.

    Silva, V. P. et al. Evaluation of Arthrobacter aurescens strain TC1 as bioaugmentation bacterium in soils contaminated with the herbicidal substance terbuthylazine. PLoS ONE 10, e0144978 (2015).

    Article  Google Scholar 

  • 27.

    Deutch, C. E., Bui, A. P. & Ho, T. Growth of Paenarthrobacter aurescens strain TC1 on atrazine and isopropylamine during osmotic stress. Ann. Microbiol. 68, 569–577. https://doi.org/10.1007/s13213-018-1364-9 (2018).

    CAS  Article  Google Scholar 

  • 28.

    Xu, C. et al. Genome-scale metabolic model in guiding metabolic engineering of microbial improvement. Appl. Microbiol. Biotechnol. 97, 519–539. https://doi.org/10.1007/s00253-012-4543-9 (2013).

    CAS  Article  PubMed  Google Scholar 

  • 29.

    Contador, C. A., Rodriguez, V., Andrews, B. A. & Asenjo, J. A. Genome-scale reconstruction of Salinispora tropica CNB-440 metabolism to study strain-specific adaptation. Antonie Van Leeuwenhoek 108, 1075–1090. https://doi.org/10.1007/s10482-015-0561-9 (2015).

    CAS  Article  PubMed  Google Scholar 

  • 30.

    Mahadevan, R. & Lovley, D. R. The degree of redundancy in metabolic genes is linked to mode of metabolism. Biophys. J. 94, 1216–1220. https://doi.org/10.1529/biophysj.107.118414 (2008).

    CAS  Article  PubMed  Google Scholar 

  • 31.

    Mahadevan, R. et al. Characterization of metabolism in the Fe(III)-reducing organism Geobacter sulfurreducens by constraint-based modeling. Appl. Environ. Microbiol. 72, 1558–1568. https://doi.org/10.1128/AEM.72.2.1558-1568.2006 (2006).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 32.

    Oberhardt, M. A. et al. Harnessing the landscape of microbial culture media to predict new organism-media pairings. Nat. Commun. 6, 8493. https://doi.org/10.1038/ncomms9493 (2015).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 33.

    Lee, J., Yun, H., Feist, A. M., Palsson, B. Ø & Lee, S. Y. Genome-scale reconstruction and in silico analysis of the Clostridium acetobutylicum ATCC 824 metabolic network. Appl. Microbiol. Biotechnol. https://doi.org/10.1007/s00253-008-1654-4 (2008).

    Article  PubMed  Google Scholar 

  • 34.

    Thiele, I., Vo, T. D., Price, N. D. & Palsson, B. O. Expanded metabolic reconstruction of Helicobacter pylori (iIT341 GSM/GPR): An in silico genome-scale characterization of single- and double-deletion mutants. J. Bacteriol. 187, 5818–5830. https://doi.org/10.1128/JB.187.16.5818-5830.2005 (2005).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 35.

    Price, N. D., Papin, J. A., Schilling, C. H. & Palsson, B. O. Genome-scale microbial in silico models: The constraints-based approach. Trends Biotechnol. 21, 162–169. https://doi.org/10.1016/S0167-7799(03)00030-1 (2003).

    CAS  Article  PubMed  Google Scholar 

  • 36.

    Reed, J. L., Vo, T. D., Schilling, C. H. & Palsson, B. O. An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR). Genome Biol. 4, R54. https://doi.org/10.1186/gb-2003-4-9-r54 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  • 37.

    Fang, Y. et al. Direct coupling of a genome-scale microbial in silico model and a groundwater reactive transport model. J. Contam. Hydrol. 122, 96–103. https://doi.org/10.1016/j.jconhyd.2010.11.007 (2011).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 38.

    Zomorrodi, A. R. & Segre, D. Synthetic ecology of microbes: Mathematical models and applications. J. Mol. Biol. 428, 837–861. https://doi.org/10.1016/j.jmb.2015.10.019 (2016).

    CAS  Article  PubMed  Google Scholar 

  • 39.

    Biswas, K., Paul, D. & Sinha, S. N. Biological agents of bioremediation: A concise review. Microbiology 1, 39–43 (2015).

    Google Scholar 

  • 40.

    Henson, M. A. Genome-scale modelling of microbial metabolism with temporal and spatial resolution. Biochem. Soc. Trans. 43, 1164–1171. https://doi.org/10.1042/BST20150146 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 41.

    Cordova, L. T., Long, C. P., Venkataramanan, K. P. & Antoniewicz, M. R. Complete genome sequence, metabolic model construction and phenotypic characterization of Geobacillus LC300, an extremely thermophilic, fast growing, xylose-utilizing bacterium. Metab. Eng. 32, 74–81. https://doi.org/10.1016/j.ymben.2015.09.009 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 42.

    de la Torre, A. et al. Genome-scale metabolic reconstructions and theoretical investigation of methane conversion in Methylomicrobium buryatense strain 5G(B1). Microb. Cell Fact. 14, 188. https://doi.org/10.1186/s12934-015-0377-3 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 43.

    Zou, W. et al. Reconstruction and analysis of a genome-scale metabolic model of the vitamin C producing industrial strain Ketogulonicigenium vulgare WSH-001. J. Biotechnol. 161, 42–48. https://doi.org/10.1016/j.jbiotec.2012.05.015 (2012).

    CAS  Article  PubMed  Google Scholar 

  • 44.

    Pacheco, M. P., Bintener, T. & Sauter, T. Towards the network-based prediction of repurposed drugs using patient-specific metabolic models. EBioMedicine https://doi.org/10.1016/j.ebiom.2019.04.017 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • 45.

    Izallalen, M. et al. Geobacter sulfurreducens strain engineered for increased rates of respiration. Metab. Eng. 10, 267–275. https://doi.org/10.1016/j.ymben.2008.06.005 (2008).

    CAS  Article  PubMed  Google Scholar 

  • 46.

    Burgard, A. P., Pharkya, P. & Maranas, C. D. Optknock: A bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol. Bioeng. 84, 647–657. https://doi.org/10.1002/bit.10803 (2003).

    CAS  Article  PubMed  Google Scholar 

  • 47.

    Ang, K. S., Lakshmanan, M., Lee, N. R. & Lee, D. Y. Metabolic modeling of microbial community interactions for health, environmental and biotechnological applications. Curr. Genom. 19, 712–722. https://doi.org/10.2174/1389202919666180911144055 (2018).

    CAS  Article  Google Scholar 

  • 48.

    Zhuang, K. et al. Genome-scale dynamic modeling of the competition between Rhodoferax and Geobacter in anoxic subsurface environments. ISME J. 5, 305–316. https://doi.org/10.1038/ismej.2010.117 (2011).

    Article  PubMed  Google Scholar 

  • 49.

    Xu, X. et al. Modeling microbial communities from atrazine contaminated soils promotes the development of biostimulation solutions. ISME J. 13, 494–508. https://doi.org/10.1038/s41396-018-0288-5 (2019).

    CAS  Article  PubMed  Google Scholar 

  • 50.

    Faust, K. Microbial consortium design benefits from metabolic modeling. Trends Biotechnol. 37, 123–125. https://doi.org/10.1016/j.tibtech.2018.11.004 (2019).

    CAS  Article  PubMed  Google Scholar 

  • 51.

    Mongodin, E. F. et al. Secrets of soil survival revealed by the genome sequence of Arthrobacter aurescens TC1. PLoS Genet. 2, e214. https://doi.org/10.1371/journal.pgen.0020214 (2006).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 52.

    Henry, C. S. et al. High-throughput generation, optimization and analysis of genome-scale metabolic models. Nat. Biotechnol. 28, 977–982. https://doi.org/10.1038/nbt.1672 (2010).

    CAS  Article  PubMed  Google Scholar 

  • 53.

    Oh, Y. K., Palsson, B. O., Park, S. M., Schilling, C. H. & Mahadevan, R. Genome-scale reconstruction of metabolic network in Bacillus subtilis based on high-throughput phenotyping and gene essentiality data. J. Biol. Chem. 282, 28791–28799. https://doi.org/10.1074/jbc.M703759200 (2007).

    CAS  Article  PubMed  Google Scholar 

  • 54.

    Thiele, I. & Palsson, B. O. A protocol for generating a high-quality genome-scale metabolic reconstruction. Nat. Protoc. 5, 93–121. https://doi.org/10.1038/nprot.2009.203 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 55.

    Meyer, F. et al. The metagenomics RAST server—A public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinform. 9, 1–8. https://doi.org/10.1186/1471-2105-9-386 (2008).

    CAS  Article  Google Scholar 

  • 56.

    Kanehisa, M. et al. Data, information, knowledge and principle: Back to metabolism in KEGG. Nucleic Acids Res. 42, D199-205. https://doi.org/10.1093/nar/gkt1076 (2014).

    CAS  Article  Google Scholar 

  • 57.

    Nordberg, H. et al. The genome portal of the Department of Energy Joint Genome Institute: 2014 updates. Nucleic Acids Res. 42, D26-31. https://doi.org/10.1093/nar/gkt1069 (2014).

    CAS  Article  PubMed  Google Scholar 

  • 58.

    Apweiler, R. et al. UniProt: The Universal Protein knowledgebase. Nucleic Acids Res. 32, D115-119. https://doi.org/10.1093/nar/gkh131 (2004).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 59.

    Kundu, K. et al. Defining lower limits of biodegradation: Atrazine degradation regulated by mass transfer and maintenance demand in Arthrobacter aurescens TC1. ISME J. https://doi.org/10.1038/s41396-019-0430-z (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • 60.

    Larocque, M., Chenard, T. & Najmanovich, R. A curated C. difficile strain 630 metabolic network: Prediction of essential targets and inhibitors. BMC Syst. Biol. 8, 117. https://doi.org/10.1186/s12918-014-0117-z (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 61.

    Monk, J. M. et al. iML1515, a knowledgebase that computes Escherichia coli traits. Nat. Biotechnol. 35, 904–908. https://doi.org/10.1038/nbt.3956 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 62.

    Hucka, M. et al. The systems biology markup language (SBML): A medium for representation and exchange of biochemical network models. Bioinformatics 19, 524–531. https://doi.org/10.1093/bioinformatics/btg015 (2003).

    CAS  Article  PubMed  Google Scholar 

  • 63.

    Govantes, F. et al. Regulation of the atrazine-degradative genes in Pseudomonas sp. strain ADP. FEMS Microbiol. Lett. 310, 1–8. https://doi.org/10.1111/j.1574-6968.2010.01991.x (2010).

    CAS  Article  PubMed  Google Scholar 

  • 64.

    Guo, Q., Zhang, J., Wan, R. & Xie, S. Impacts of carbon sources on simazine biodegradation by Arthrobacter strain SD3-25 in liquid culture and soil microcosm. Int. Biodeterior. Biodegrad. 89, 1–6 (2014).

    CAS  Article  Google Scholar 

  • 65.

    Dsouza, M., Taylor, M. W., Turner, S. J. & Aislabie, J. Genomic and phenotypic insights into the ecology of Arthrobacter from Antarctic soils. BMC Genom. 16, 36. https://doi.org/10.1186/s12864-015-1220-2 (2015).

    Article  Google Scholar 

  • 66.

    Deutch, C. E. L-Proline catabolism by the high G+C Gram-positive bacterium Paenarthrobacter aurescens strain TC1. Antonie Van Leeuwenhoek 112, 237–251. https://doi.org/10.1007/s10482-018-1148-z (2019).

    CAS  Article  PubMed  Google Scholar 

  • 67.

    Mahadevan, R. & Schilling, C. H. The effects of alternate optimal solutions in constraint-based genome-scale metabolic models. Metab. Eng. 5, 264–276 (2003).

    CAS  Article  Google Scholar 

  • 68.

    Zhang, Q. et al. Impacts of nitrogen and phosphorus on atrazine-contaminated soil remediation and detoxification by Arthrobacter sp. strain HB-5. Environ. Earth Sci. 71, 1465–1471 (2014).

    CAS  Article  Google Scholar 

  • 69.

    Lachance, J. C. et al. BOFdat: Generating biomass objective functions for genome-scale metabolic models from experimental data. PLoS Comput. Biol. 15, e1006971. https://doi.org/10.1371/journal.pcbi.1006971 (2019).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 70.

    Reed, J. L., Famili, I., Thiele, I. & Palsson, B. O. Towards multidimensional genome annotation. Nat. Rev. Genet. 7, 130–141. https://doi.org/10.1038/nrg1769 (2006).

    CAS  Article  PubMed  Google Scholar 

  • 71.

    Casida, J. E. & Bryant, R. J. The ABCs of pesticide toxicology: Amounts, biology, and chemistry. Toxicol. Res. (Camb.) 6, 755–763. https://doi.org/10.1039/c7tx00198c (2017).

    CAS  Article  Google Scholar 

  • 72.

    King, Z. A. et al. BiGG Models: A platform for integrating, standardizing and sharing genome-scale models. Nucleic Acids Res. 44, D515-522. https://doi.org/10.1093/nar/gkv1049 (2016).

    CAS  Article  PubMed  Google Scholar 

  • 73.

    Varma, A. & Palsson, B. O. Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type Escherichia coli W3110. Appl. Environ. Microbiol. 60, 3724–3731 (1994).

    CAS  Article  Google Scholar 

  • 74.

    Orth, J. D., Thiele, I. & Palsson, B. O. What is flux balance analysis?. Nat. Biotechnol. 28, 245–248. https://doi.org/10.1038/nbt.1614 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 75.

    Harcombe, W. R. et al. Metabolic resource allocation in individual microbes determines ecosystem interactions and spatial dynamics. Cell Rep. 7, 1104–1115. https://doi.org/10.1016/j.celrep.2014.03.070 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 76.

    King, Z. A. et al. Escher: A web application for building, sharing, and embedding data-rich visualizations of biological pathways. PLoS Comput. Biol. 11, e1004321. https://doi.org/10.1371/journal.pcbi.1004321 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 


  • Source: Ecology - nature.com

    Male swarming aggregation pheromones increase female attraction and mating success among multiple African malaria vector mosquito species

    A framework based on deep neural networks to extract anatomy of mosquitoes from images