in

Genome sequencing and population genomics modeling provide insights into the local adaptation of weeping forsythia

  • 1.

    Kawecki, T. J. & Ebert, D. Conceptual issues in local adaptation. Ecol. Lett.7, 1225–1241 (2004).

    Google Scholar 

  • 2.

    Cushman, S. A. et al. Editorial: the least cost path from landscape genetics to landscape genomics: challenges and opportunities to explore NGS data in a spatially explicit context. Front. Genet.9, 215 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 3.

    Pereira, A. Plant abiotic stress challenges from the changing environment. Front. Plant Sci.7, 1123 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 4.

    Rellstab, C. et al. A practical guide to environmental association analysis in landscape genomics. Mol. Ecol.24, 4348–4370 (2015).

    PubMed  Google Scholar 

  • 5.

    Zhu, J. K. Abiotic stress signaling and responses in plants. Cell167, 313–324 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  • 6.

    Allendorf, F. W., Hohenlohe, P. A. & Luikart, G. Genomics and the future of conservation genetics. Nat. Rev. Genet.11, 697–709 (2010).

    PubMed  CAS  Google Scholar 

  • 7.

    Radwan, J. & Babik, W. The genomics of adaptation. Proc. Biol. Sci.279, 5024–5028 (2012).

    PubMed  PubMed Central  Google Scholar 

  • 8.

    Li, Y. et al. Ten years of landscape genomics: challenges and opportunities. Front. Plant Sci.8, 2136 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 9.

    Cushman, S. A. Grand challenges in evolutionary and population genetics: the importance of integrating epigenetics, genomics, modeling, and experimentation. Front. Genet.5, 197 (2014).

    PubMed  PubMed Central  Google Scholar 

  • 10.

    Guggisberg, A. et al. The genomic basis of adaptation to calcareous and siliceous soils in Arabidopsis lyrata. Mol. Ecol.27, 5088–5103 (2018).

    PubMed  Google Scholar 

  • 11.

    Brennan, R. S. et al. Integrative population and physiological genomics reveals mechanisms of adaptation in killifish. Mol. Biol. Evol.35, 2639–2653 (2018).

    PubMed  CAS  Google Scholar 

  • 12.

    Chen, C. et al. Population genomics provide insights into the evolution and adaptation of the eastern honey bee (Apis cerana). Mol. Biol. Evol.35, 2260–2271 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  • 13.

    Dittberner, H. et al. Natural variation in stomata size contributes to the local adaptation of water-use efficiency in Arabidopsis thaliana. Mol. Ecol.27, 4052–4065 (2018).

    PubMed  CAS  Google Scholar 

  • 14.

    Pfeifer, S. P. et al. The evolutionary history of Nebraska deer mice: local adaptation in the face of strong gene flow. Mol. Biol. Evol.35, 792–806 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  • 15.

    Ahrens, C. W., Byrne, M. & Rymer, P. D. Standing genomic variation within coding and regulatory regions contributes to the adaptive capacity to climate in a foundation tree species. Mol. Ecol.28, 2502–2516 (2019).

    PubMed  CAS  Google Scholar 

  • 16.

    Wright, S. Evolution in Mendelian populations. Genetics16, 97–159 (1931).

    PubMed  PubMed Central  CAS  Google Scholar 

  • 17.

    Miao, C. Y. et al. Landscape genomics reveal that ecological character determines adaptation: a case study in smoke tree (Cotinus coggygria Scop.). BMC Evol. Biol.17, 202 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 18.

    Li, J. X. et al. Adaptive genetic differentiation in Pterocarya stenoptera (Juglandaceae) driven by multiple environmental variables were revealed by landscape genomics. BMC Plant Biol.18, 306 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 19.

    Arciero, E. et al. Demographic history and genetic adaptation in the Himalayan region inferred from genome-wide SNP genotypes of 49 populations. Mol. Biol. Evol.35, 1916–1933 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  • 20.

    Friis, G. et al. Genome-wide signals of drift and local adaptation during rapid lineage divergence in a songbird. Mol. Ecol.27, 746–760 (2018).

    Google Scholar 

  • 21.

    Fitzpatrick, M. C. & Keller, S. R. Ecological genomics meets community-level modelling of biodiversity: mapping the genomic landscape of current and future environmental adaptation. Ecol. Lett.18, 1–16 (2015).

    PubMed  Google Scholar 

  • 22.

    Guerrero, J. et al. Soil environment is a key driver of adaptation in Medicago truncatula: new insights from landscape genomics. N. Phytol.219, 378–390 (2018).

    CAS  Google Scholar 

  • 23.

    Keller, S. R. et al. Local adaptation in the flowering-time gene network of balsam poplar, Populus balsamifera L. Mol. Biol. Evol.29, 3143–3152 (2012).

    PubMed  CAS  Google Scholar 

  • 24.

    Manel, S. et al. Genome assemblies, genomic resources and their influence on the detection of the signal of positive selection in genome scans. Mol. Ecol.25, 170–184 (2016).

    PubMed  CAS  Google Scholar 

  • 25.

    Fu, Z. Z. et al. Molecular data and ecological niche modeling reveal population dynamics of widespread shrub Forsythia suspensa (Oleaceae) in China’s warm-temperate zone in response to climate change during the Pleistocene. BMC Evol. Biol.14, 114 (2014).

    PubMed  PubMed Central  Google Scholar 

  • 26.

    Hamrick, J. L. & Godt, M. J. Plant Population Genetics, Breeding, and Genetic Resources (Sinauer, Sunderland, 1990).

  • 27.

    Hewitt, G. M. Genetic consequences of climatic oscillations in the quaternary. Philos. Trans. R. Soc. Lond. B Biol. Sci.359, 183–195 (2004).

    PubMed  PubMed Central  CAS  Google Scholar 

  • 28.

    Manel, S. & Holderegger, R. Ten years of landscape genetics. Trends Ecol. Evol.28, 614–621 (2013).

    PubMed  Google Scholar 

  • 29.

    Balkenhol, N. et al. Current status, future opportunities, and remaining challenges in landscape genetics. In (eds Balkenhol, N. C., et al.). Landscape Genetics: Concepts, Methods, Applications (Wiley, Hoboken, 2015).

  • 30.

    Yang, J. et al. Landscape population genomics of forsythia (Forsythia suspensa) reveal that ecological habitats determine the adaptive evolution of species. Front. Plant Sci.8, 481 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 31.

    Sun, X. et al. SLAF-seq: an efficient method of large-scale de novo SNP discovery and genotyping using high-throughput sequencing. PLoS ONE8, e58700 (2013).

    PubMed  PubMed Central  CAS  Google Scholar 

  • 32.

    Sollars, E. S. A. et al. Genome sequence and genetic diversity of European ash trees. Nature541, 212–216 (2017).

    PubMed  CAS  Google Scholar 

  • 33.

    Unver, T. et al. Genome of wild olive and the evolution of oil biosynthesis. Proc. Natl Acad. Sci. USA114, E9413–E9422 (2017).

    PubMed  CAS  Google Scholar 

  • 34.

    Yang, X. et al. The chromosome-level quality genome provides insights into the evolution of the biosynthesis genes for aroma compounds of Osmanthus fragrans. Hortic. Res.5, 72 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 35.

    Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res.19, 1655–1664 (2009).

    PubMed  PubMed Central  CAS  Google Scholar 

  • 36.

    Wallander, E. & Albert, V. A. Phylogeny and classification of Oleaceae based on rps16 and trnL-F sequence data. Am. J. Bot.87, 1827–1841 (2000).

    PubMed  CAS  Google Scholar 

  • 37.

    Wang, T. Q. et al. TCM treatment of anemopyretic cold rule analysis. J. Tianjin Univ. Tradit. Chin. Med.37, 113–117 (2018).

    Google Scholar 

  • 38.

    Fritsche, L. G. et al. A large genome-wide association study of age-related macular degeneration highlights contributions of rare and common variants. Nat. Genet.48, 134–143 (2016).

    PubMed  CAS  Google Scholar 

  • 39.

    Najafi, S., Sorkheh, K. & Nasernakhaei, F. Characterization of the APETALA2/Ethylene-responsive factor (AP2/ERF) transcription factor family in sunflower. Sci. Rep.8, 11576 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 40.

    Xie, Z. et al. AP2/ERF transcription factor regulatory networks in hormone and abiotic stress responses in Arabidopsis. Front. Plant Sci.10, 228 (2019).

    PubMed  PubMed Central  Google Scholar 

  • 41.

    Chakraborty, U. & Pradhan, B. Drought stress-induced oxidative stress and antioxidative responses in four wheat (Triticum aestivum L.) varieties. Arch. Agron. Soil Sci.58, 617–630 (2012).

    CAS  Google Scholar 

  • 42.

    Noureddine, Y. Changes of peroxidase activities under cold stress in annuals populations of medicago. Mol. Plant Breed.6, 5 (2015).

    Google Scholar 

  • 43.

    Gong, L. et al. Transcriptome profiling of the potato (Solanum tuberosum L.) plant under drought stress and water-stimulus conditions. PLoS ONE10, e0128041 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 44.

    Wang, M. et al. Comparative transcriptome analysis to elucidate the enhanced thermotolerance of tea plants (Camellia sinensis) treated with exogenous calcium. Planta249, 775–786 (2019).

    PubMed  CAS  Google Scholar 

  • 45.

    Schöttler, M. A. et al. Photosynthetic complex stoichiometry dynamics in higher plants: biogenesis, function, and turnover of ATP synthase and the cytochrome b6f complex. J. Exp. Bot.66, 2373–2400 (2015).

    PubMed  Google Scholar 

  • 46.

    Collakova, E. & DellaPenna, D. The role of homogentisate phytyltransferase and other tocopherol pathway enzymes in the regulation of tocopherol synthesis during abiotic stress. Plant Physiol.133, 930–940 (2003).

    PubMed  PubMed Central  CAS  Google Scholar 

  • 47.

    Gavalas, N. A. & Clark, H. E. On the role of manganese in photosynthesis: kinetics of photoinhibition in manganese-deficent and 3-(4-chlorophenyl)-1, 1-dimethylurea-inhibited Euglena gracilis. Plant Physiol.47, 139–143 (1971).

    PubMed  PubMed Central  CAS  Google Scholar 

  • 48.

    Chen, C. Y. et al. Structural basis of jasmonate-amido synthetase FIN219 in complex with glutathione S-transferase FIP1 during the JA signal regulation. Proc. Natl Acad. Sci. USA114, E1815–E1824 (2017).

    PubMed  CAS  Google Scholar 

  • 49.

    Nisar, N. et al. Carotenoid metabolism in plant. Mol. Plant8, 68–82 (2015).

    PubMed  CAS  Google Scholar 

  • 50.

    Landguth, E. L. et al. Modeling multilocus selection in an individual-based, spatially-explicit landscape genetics framework. Mol. Ecol. Resour.20, 605–615 (2020).

    PubMed  Google Scholar 

  • 51.

    Ram, S. Role of alcohol dehydrogenase, malate dehydrogenase and malic enzyme in flooding tolerance in Brachiaria Species. J. Plant Biochem. Biot.9, 45–47 (2000).

    CAS  Google Scholar 

  • 52.

    Butsayawarapat, P. et al. Comparative transcriptome analysis of waterlogging-sensitive and tolerant zombi pea (Vigna vexillata) reveals energy conservation and root plasticity controlling waterlogging tolerance. Plants8, 264 (2019).

    PubMed Central  CAS  Google Scholar 

  • 53.

    Ohsawa, T. & Ide, Y. Global patterns of genetic variation in plant species along vertical and horizontal gradients on mountains. Glob. Ecol. Biogeogr.17, 152–163 (2008).

    Google Scholar 

  • 54.

    Yang, J. et al. Landscape genomics analysis of Achyranthes bidentata reveal adaptive genetic variations are driven by environmental variations relating to ecological habit. Popul. Ecol.59, 355–362 (2017).

    Google Scholar 

  • 55.

    Fu, Z. Z. et al. Population genetics of the widespread shrub Forsythia suspensa (Oleaceae) in warm-temperate China using microsatellite loci: implication for conservation. Plant Syst. Evol.302, 1–9 (2016).

    Google Scholar 

  • 56.

    Marcais, G. & Kingsford, C. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics27, 764–770 (2011).

    PubMed  PubMed Central  CAS  Google Scholar 

  • 57.

    Jain, M. et al. Nanopore sequencing and assembly of a human genome with ultra-long reads. Nat. Biotechnol.36, 338–345 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  • 58.

    Koren, S. et al. Canu: scalable and accurate long-read assembly via adaptive κ-mer weighting and repeat separation. Genome Res.27, 722–736 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  • 59.

    Chakraborty, M. et al. Contiguous and accurate de novo assembly of metazoan genomes with modest long read coverage. Nucleic Acids Res.44, e147 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 60.

    Vaser, R. et al. Fast and accurate de novo genome assembly from long uncorrected reads. Genome Res.27, 737–746 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  • 61.

    Walker, B. J. et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE9, e112963 (2014).

    PubMed  PubMed Central  Google Scholar 

  • 62.

    Simão, F. A. et al. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics31, 3210 (2015).

    PubMed  Google Scholar 

  • 63.

    Parra, G., Bradnam, K. & Korf, I. CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes. Bioinformatics23, 1061–1067 (2007).

    PubMed  CAS  Google Scholar 

  • 64.

    Zhang, J. et al. High-density genetic map construction and identification of a locus controlling weeping trait in an ornamental woody plant (Prunus mume Sieb. et Zucc). DNA Res.22, 1–9 (2015).

    Google Scholar 

  • 65.

    Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics25, 1754–1760 (2009).

    PubMed  PubMed Central  CAS  Google Scholar 

  • 66.

    McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res.20, 1297–1303 (2010).

    PubMed  PubMed Central  CAS  Google Scholar 

  • 67.

    Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics25, 2078–2079 (2009).

    PubMed  PubMed Central  Google Scholar 

  • 68.

    Price, A. L. et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet.38, 904–909 (2006).

    PubMed  CAS  Google Scholar 

  • 69.

    Kumar, S. et al. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol. Biol. Evol.35, 1547–1549 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  • 70.

    Excoffier, L. & Lischer, H. E. L. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour.10, 564–567 (2010).

    PubMed  Google Scholar 

  • 71.

    Pickrell, J. K. & Pritchard, J. K. Inference of population splits and mixtures from genome-wide allele frequency data. PLoS Genet.8, e1002967 (2012).

    PubMed  PubMed Central  CAS  Google Scholar 

  • 72.

    Foll, M. & Gaggiotti, O. E. A genome scan method to identify selected loci appropriate for both dominant and codominant markers: a Bayesian perspective. Genetics180, 977–993 (2008).

    PubMed  PubMed Central  Google Scholar 

  • 73.

    Hijmans, R. J. et al. Computer tools for spatial analysis of plant genetic resources data: 1. DIVA-GIS. Plant Genet. Resour. Newsl.127, 15–19 (2001).

    Google Scholar 

  • 74.

    Frichot, E. et al. Testing for associations between loci and environmental gradients using latent factor mixed models. Mol. Biol. Evol.30, 1687–1699 (2013).

    PubMed  PubMed Central  CAS  Google Scholar 

  • 75.

    Joost, S. et al. A spatial analysis method (SAM) to detect candidate loci for selection: towards a landscape genomics approach to adaptation. Mol. Ecol.16, 3955–3969 (2007).

    PubMed  CAS  Google Scholar 

  • 76.

    Stucki, S. et al. High performance computation of landscape genomic models including local indicators of spatial association. Mol. Ecol. Resour.17, 1072–1089 (2017).

    PubMed  CAS  Google Scholar 

  • 77.

    Oksanen, J. et al. Vegan: Community Ecology Package. R. Package Version 2.4-5 (2017).

  • 78.

    Altschul, S. F. et al. Basic local alignment search tool. J. Mol. Biol.215, 403–410 (1990).

    CAS  Google Scholar 


  • Source: Ecology - nature.com

    Soil carbon unearthed

    Conference scheduling undermines diversity efforts