in

Genomic history and ecology of the geographic spread of rice

  • 1.

    Purugganan, M. D. & Fuller, D. Q. The nature of selection during plant domestication. Nature 457, 843–848 (2009).

  • 2.

    Meyer, R. S. & Purugganan, M. D. Evolution of crop species: genetics of domestication and diversification. Nat. Rev. Genet. 14, 840–852 (2013).

  • 3.

    Wang, W. et al. Genomic variation in 3,010 diverse accessions of Asian cultivated rice. Nature 557, 43–49 (2018).

  • 4.

    Glaszmann, J. C. Isozymes and classification of Asian rice varieties. Theor. Appl. Genet. 74, 21–30 (1987).

  • 5.

    Fuller, D. Q. et al. The contribution of rice agriculture and livestock pastoralism to prehistoric methane levels: an archaeological assessment. Holocene 21, 743–759 (2011).

    • Google Scholar
  • 6.

    Fuller, D. Q. & Qin, L. Water management and labour in the origins and dispersal of Asian rice. World Archaeol. 41, 88–111 (2009).

    • Google Scholar
  • 7.

    Fuller, D. Q. et al. The domestication process and domestication rate in rice: spikelet bases from the Lower Yangtze. Science 323, 1607–1610 (2009).

  • 8.

    Allaby, R. G., Stevens, C., Lucas, L., Maeda, O. & Fuller, D. Q. Geographic mosaics and changing rates of cereal domestication. Philos. Trans. R. Soc. Lond. B 372, 20160429 (2017).

    • Google Scholar
  • 9.

    Silva, F. et al. A tale of two rice varieties: modelling the prehistoric dispersals of japonica and proto-indica rices. Holocene 28, 1745–1758 (2018).

    • Google Scholar
  • 10.

    Fuller, D. Q. Pathways to Asian civilizations: tracing the origins and spread of rice and rice cultures. Rice 4, 78–92 (2011).

    • Google Scholar
  • 11.

    Huang, X. et al. A map of rice genome variation reveals the origin of cultivated rice. Nature 490, 497–501 (2012).

  • 12.

    Choi, J. Y. & Purugganan, M. D. Multiple origin but single domestication led to Oryza sativa. G3 8, 797–803 (2018).

  • 13.

    Choi, J. Y. et al. The rice paradox: multiple origins but single domestication in Asian rice. Mol. Biol. Evol. 34, 969–979 (2017).

  • 14.

    Fuller, D. Q., Castillo, C. C. & Murphy, C. in The Routledge Handbook of Archaeology and Globalization (ed. Hodos, T.) 711–729 (Routledge, 2016).

  • 15.

    Silva, F. et al. Modelling the geographical origin of rice cultivation in Asia using the rice archaeological database. PLoS ONE 10, e0137024 (2015).

  • 16.

    Li, J.-Y., Wang, J. & Zeigler, R. S. The 3,000 rice genomes project: new opportunities and challenges for future rice research. Gigascience 3, 2047–217X–3–8 (2014).

  • 17.

    Excoffier, L., Smouse, P. E. & Quattro, J. M. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131, 479–491 (1992).

  • 18.

    Rousseeuw, P. J. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987).

    • Google Scholar
  • 19.

    Petkova, D., Novembre, J. & Stephens, M. Visualizing spatial population structure with estimated effective migration surfaces. Nat. Genet. 48, 94–100 (2016).

  • 20.

    Peter, B. M., Petkova, D. & Novembre, J. Genetic landscapes reveal how human genetic diversity aligns with geography. Mol. Biol. Evol. 37, 943–951 (2020).

    • PubMed
    • Google Scholar
  • 21.

    Slayton, E. R. Seascape Corridors: Modeling Routes to Connect Communities Across the Caribbean Sea. (Sidestone Press, 2018).

  • 22.

    Peres-Neto, P. R., Legendre, P., Dray, S. & Borcard, D. Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology 87, 2614–2625 (2006).

  • 23.

    Lasky, J. R. et al. Genome–environment associations in sorghum landraces predict adaptive traits. Sci. Adv. 1, e1400218 (2015).

  • 24.

    Lasky, J. R. et al. Characterizing genomic variation of Arabidopsis thaliana: the roles of geography and climate. Mol. Ecol. 21, 5512–5529 (2012).

    • PubMed
    • Google Scholar
  • 25.

    Haefele, S. M., Nelson, A. & Hijmans, R. J. Soil quality and constraints in global rice production. Geoderma 235-236, 250–259 (2014).

    • CAS
    • Google Scholar
  • 26.

    Kaufmann, L & Rousseeuw, P. J. in Reports of the Faculty of Technical Mathematics and Informatics Vol. 87 (Delft University of Technology, 1987).

  • 27.

    Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19, 1655–1664 (2009).

  • 28.

    Patterson, N. et al. Ancient admixture in human history. Genetics 192, 1065–1093 (2012).

  • 29.

    An, C.-B., Tang, L., Barton, L. & Chen, F.-H. Climate change and cultural response around 4000 cal yr B.P. in the western part of Chinese Loess Plateau. Quat. Res 63, 347–352 (2005).

    • Google Scholar
  • 30.

    Walker, M. J. C. et al. Formal subdivision of the Holocene series/epoch: a discussion paper by a working group of INTIMATE (integration of ice-core, marine and terrestrial records) and the subcommission on Quaternary stratigraphy (International Commission on Stratigraphy). J. Quat. Sci 27, 649–659 (2012).

    • Google Scholar
  • 31.

    Lanehart, R. E. et al. Dietary adaptation during the Longshan period in China: stable isotope analyses at Liangchengzhen (southeastern Shandong). J. Archaeol. Sci. 38, 2171–2181 (2011).

    • Google Scholar
  • 32.

    Guedes, J. D., Jiang, M., He, K., Wu, X. & Jiang, Z. Site of Baodun yields earliest evidence for the spread of rice and foxtail millet agriculture to south-west China. Antiquity 87, 758–771 (2013).

    • Google Scholar
  • 33.

    Guedes, J. D. & Butler, E. E. Modeling constraints on the spread of agriculture to Southwest China with thermal niche models. Quat. Int. 349, 29–41 (2014).

    • Google Scholar
  • 34.

    Dal Martello, R. et al. Early agriculture at the crossroads of China and Southeast Asia: archaeobotanical evidence and radiocarbon dates from Baiyangcun, Yunnan. J. Archaeol. Sci. Rep. 20, 711–721 (2018).

    • Google Scholar
  • 35.

    Fuller, D. Q., Weisskopf, A. R. & Castillo, C. Pathways of rice diversification across Asia. Archaeol. Int. 19, 84–96 (2016).

    • Google Scholar
  • 36.

    d’Alpoim Guedes, J., Jin, G. & Bocinsky, R. K. The impact of climate on the spread of rice to north-eastern China: a new look at the data from Shandong province. PLoS ONE 10, e0130430 (2015).

  • 37.

    Crawford, G. W. & Lee, G.-A. Agricultural origins in the Korean Peninsula. Antiquity 77, 87–95 (2003).

    • Google Scholar
  • 38.

    Ahn, S.-M. The emergence of rice agriculture in Korea: archaeobotanical perspectives. Archaeol. Anthropol. Sci. 2, 89–98 (2010).

    • Google Scholar
  • 39.

    Yang, X. et al. New radiocarbon evidence on early rice consumption and farming in South China. Holocene 27, 1045–1051 (2017).

    • Google Scholar
  • 40.

    Marcott, S. A., Shakun, J. D., Clark, P. U. & Mix, A. C. A reconstruction of regional and global temperature for the past 11,300 years. Science 339, 1198–1201 (2013).

  • 41.

    d’Alpoim Guedes, J. & Bocinsky, R. K. Climate change stimulated agricultural innovation and exchange across Asia. Sci. Adv. 4, eaar4491 (2018).

  • 42.

    Castillo, C. C., Fuller, D. Q., Piper, P. J., Bellwood, P. & Oxenham, M. Hunter-gatherer specialization in the late Neolithic of southern Vietnam—the case of Rach Nui. Quat. Int. 489, 63–79 (2018).

    • Google Scholar
  • 43.

    Higham, C. F. W. Debating a great site: Ban Non Wat and the wider prehistory of Southeast Asia. Antiquity 89, 1211–1220 (2015).

    • Google Scholar
  • 44.

    Higham, C. The Bronze Age of Southeast Asia (Cambridge Univ. Press, 1996).

  • 45.

    Castillo, C. C. et al. Social responses to climate change in Iron Age north-east Thailand: new archaeobotanical evidence. Antiquity 92, 1274–1291 (2018).

    • Google Scholar
  • 46.

    McColl, H. et al. The prehistoric peopling of Southeast Asia. Science 361, 88–92 (2018).

  • 47.

    Lipson, M. et al. Ancient genomes document multiple waves of migration in Southeast Asian prehistory. Science 361, 92–95 (2018).

  • 48.

    Calò, A. The Distribution of Bronze Drums in Early Southeast Asia: Trade Routes and Cultural Spheres. (Archaeopress, 2009).

  • 49.

    Castillo, C. C., Bellina, B. & Fuller, D. Q. Rice, beans and trade crops on the early maritime Silk Route in Southeast Asia. Antiquity 90, 1255–1269 (2016).

    • Google Scholar
  • 50.

    Hung, H.-C. et al. Ancient jades map 3,000 years of prehistoric exchange in Southeast Asia. Proc. Natl Acad. Sci. USA 104, 19745–19750 (2007).

  • 51.

    Takamiya, H., Hudson, M. J., Yonenobu, H., Kurozumi, T. & Toizumi, T. An extraordinary case in human history: prehistoric hunter-gatherer adaptation to the islands of the Central Ryukyus (Amami and Okinawa archipelagos), Japan. Holocene 26, 408–422 (2016).

    • Google Scholar
  • 52.

    Zürcher, E. in The Buddhist conquest of China (Brill, 1972).

  • 53.

    Deng, Z. et al. From early domesticated rice of the middle Yangtze basin to millet, rice and wheat agriculture: archaeobotanical macro-remains from Baligang, Nanyang Basin, central China (6700–500 BC). PLoS ONE 10, e0139885 (2015).

  • 54.

    Verdugo, M. P. et al. Ancient cattle genomics, origins, and rapid turnover in the Fertile Crescent. Science 365, 173–176 (2019).

  • 55.

    Gibbons, A. How the Akkadian empire was hung out to dry. Science 261, 985 (1993).

  • 56.

    Wang, J. et al. The abrupt climate change near 4,400 yr BP on the cultural transition in Yuchisi, China and its global linkage. Sci. Rep. 6, 27723 (2016).

  • 57.

    Harlan, J. R. Our vanishing genetic resources. Science 188, 617–621 (1975).

  • 58.

    Villa, T. C. C., Maxted, N., Scholten, M. & Ford-Lloyd, B. Defining and identifying crop landraces. Plant Genet. Resour. 3, 373–384 (2005).

    • Google Scholar
  • 59.

    McLaren, C. G., Bruskiewich, R. M., Portugal, A. M. & Cosico, A. B. The International Rice Information System. A platform for meta-analysis of rice crop data. Plant Physiol. 139, 637–642 (2005).

  • 60.

    Huke, R. E. & Huke, E. H. Rice Area by Type of Culture: South, Southeast, and East Asia: A Revised and Updated Data Base (International Rice Research Institute, 1997).

  • 61.

    Maclean, J., Hardy, B. & Hettel, G. Rice Almanac: Source Book for One of the Most Important Economic Activities on Earth 4th edn (International Rice Research Institute, 2013).

  • 62.

    Laborte, A. G. et al. RiceAtlas, a spatial database of global rice calendars and production. Sci. Data 4, 170074 (2017).

  • 63.

    Kim, H. et al. Population dynamics among six major groups of the Oryza rufipogon species complex, wild relative of cultivated Asian rice. Rice 9, 56 (2016).

  • 64.

    Hirano, H. Y., Eiguchi, M. & Sano, Y. A single base change altered the regulation of the Waxy gene at the posttranscriptional level during the domestication of rice. Mol. Biol. Evol. 15, 978–987 (1998).

  • 65.

    Hammarström, H., Forkel, R. & Haspelmath, M. Glottolog 4.0 (2019); https://doi.org/10.5281/zenodo.3260726

  • 66.

    Hijmans, R. J. & van Etten, J. raster: Geographic data analysis and modeling v.2 (2014).

  • 67.

    Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 170122 (2017).

  • 68.

    Zomer, R. J. et al. Trees and Water: Smallholder Agroforestry on Irrigated Lands in Northern India. (International Water Management Institute, 2007).

  • 69.

    Zomer, R. J., Trabucco, A., Bossio, D. A. & Verchot, L. V. Climate change mitigation: A spatial analysis of global land suitability for clean development mechanism afforestation and reforestation. Agric. Ecosyst. Environ. 126, 67–80 (2008).

    • Google Scholar
  • 70.

    Kummu, M., de Moel, H., Ward, P. J. & Varis, O. How close do we live to water? A global analysis of population distance to freshwater bodies. PLoS ONE 6, e20578 (2011).

  • 71.

    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).

    • Google Scholar
  • 72.

    Global Soil Data Task Group. Global gridded surfaces of selected soil characteristics (IGBP-DIS) (2002); https://doi.org/10.3334/ORNLDAAC/569

  • 73.

    Dunne, K. A. & Willmott, C. J. Global distribution of plant-extractable water capacity of soil. Int. J. Climatol. 16, 841–859 (1996).

    • Google Scholar
  • 74.

    Fan, Y., Li, H. & Miguez-Macho, G. Global patterns of groundwater table depth. Science 339, 940–943 (2013).

  • 75.

    Di Tommaso, P. et al. Nextflow enables reproducible computational workflows. Nat. Biotechnol. 35, 316–319 (2017).

  • 76.

    Du, H. et al. Sequencing and de novo assembly of a near complete indica rice genome. Nat. Commun. 8, 15324 (2017).

  • 77.

    Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Preprint at https://arxiv.org/abs/1303.3997 (2013).

  • 78.

    Van der Auwera, G. A. et al. From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr. Protoc. Bioinformatics 43, 11.10.1–11.10.33 (2013).

    • Google Scholar
  • 79.

    Li, H. Tabix: fast retrieval of sequence features from generic TAB-delimited files. Bioinformatics 27, 718–719 (2011).

  • 80.

    McCouch, S. R. et al. Open access resources for genome-wide association mapping in rice. Nat. Commun. 7, 10532 (2016).

  • 81.

    Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

  • 82.

    Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience 4, 7 (2015).

  • 83.

    R Core Team. R: A Language and Environment for Statistical Computing http://www.R-project.org/ (R Foundation for Statistical Computing, 2013).

  • 84.

    Oksanen, J. Vegan: An Introduction to Ordination https://cran.r-project.org/web/packages/vegan/vignettes/intro-vegan.pdf (2015).

  • 85.

    Browning, S. R. & Browning, B. L. Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. Am. J. Hum. Genet. 81, 1084–1097 (2007).

  • 86.

    van Etten, J. R package gdistance: distances and routes on geographical grids. J. Stat. Softw. 76, v76i13 (2017).

    • Google Scholar
  • 87.

    Tobler, W. Three Presentations on Geographical Analysis and Modeling: Non-isotropic Geographic Modeling; Speculations on the Geometry of Geography; And Global Spatial Analysis (National Center for Geographic Information and Analysis, 1993).

  • 88.

    White, D. A. & Surface-Evans, S. L. Least Cost Analysis of Social Landscapes: Archaeological Case Studies (Univ. Utah Press, 2012).

  • 89.

    Irwin, G., Bickler, S. & Quirke, P. Voyaging by canoe and computer: experiments in the settlement of the Pacific Ocean. Antiquity 64, 34–50 (1990).

    • Google Scholar
  • 90.

    Clarke, R. T., Rothery, P. & Raybould, A. F. Confidence limits for regression relationships between distance matrices: estimating gene flow with distance. J. Agric. Biol. Environ. Stat. 7, 361 (2002).

    • Google Scholar
  • 91.

    Akaike, H. A new look at the statistical model identification. IEEE Trans. Automat. Contr. 19, 716–723 (1974).

    • Google Scholar
  • 92.

    Shirk, A. J., Landguth, E. L. & Cushman, S. A. A comparison of regression methods for model selection in individual-based landscape genetic analysis. Mol. Ecol. Resour. 18, 55–67 (2018).

    • PubMed
    • Google Scholar
  • 93.

    Peterman, W. E. ResistanceGA: An R package for the optimization of resistance surfaces using genetic algorithms. Methods Ecol. Evol. 9, 1638–1647 (2018).

    • Google Scholar
  • 94.

    Peterman, W. E., Connette, G. M., Semlitsch, R. D. & Eggert, L. S. Ecological resistance surfaces predict fine-scale genetic differentiation in a terrestrial woodland salamander. Mol. Ecol. 23, 2402–2413 (2014).

    • PubMed
    • Google Scholar
  • 95.

    Bauman, D., Drouet, T., Fortin, M.-J. & Dray, S. Optimizing the choice of a spatial weighting matrix in eigenvector-based methods. Ecology 99, 2159–2166 (2018).

    • PubMed
    • Google Scholar
  • 96.

    Dray, S. et al. adespatial: Multivariate Multiscale Spatial Analysis. R package v.0 (2019).

  • 97.

    Mardia, K. V. Some properties of classical multi-dimesional scaling. Comm. Stat. Theory Methods 7, 1233–1241 (1978).

    • Google Scholar
  • 98.

    Schubert, E. & Rousseeuw, P. J. in Similarity Search and Applications. SISAP 2019. Lecture Notes in Computer Science Vol 11807 (eds Amato, G. et al.) 171–187 (Springer, 2019).

  • 99.

    Kahle, D. & Wickham, H. ggmap: spatial visualization with ggplot2. R J. 5, 144–161 (2013).

    • Google Scholar
  • 100.

    Leppälä, K., Nielsen, S. V. & Mailund, T. admixturegraph: an R package for admixture graph manipulation and fitting. Bioinformatics 33, 1738–1740 (2017).

  • 101.

    Terhorst, J., Kamm, J. A. & Song, Y. S. Robust and scalable inference of population history from hundreds of unphased whole genomes. Nat. Genet. 49, 303–309 (2017).

  • 102.

    Choi, J. Y. & Purugganan, M. D. Evolutionary epigenomics of retrotransposon-mediated methylation spreading in rice. Mol. Biol. Evol. 35, 365–382 (2018).

  • 103.

    Gaut, B. S., Morton, B. R., McCaig, B. C. & Clegg, M. T. Substitution rate comparisons between grasses and palms: synonymous rate differences at the nuclear gene Adh parallel rate differences at the plastid gene rbcL. Proc. Natl. Acad Sci. USA 93, 10274–10279 (1996).

  • 104.

    Global Historical Climatology Network-DAILY (GHCN-Daily) version 3 (NOAA National Climatic Data Center, 2012); https://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets/global-historical-climatology-network-monthly-version-3

  • 105.

    Edwards, M. Data Announcement 88-MGG-02: Digital Relief of the Surface of the Earth (National Oceanic and Atmospheric Administration and National Geophysical Data Center, 1988).


  • Source: Ecology - nature.com

    Fruitbody chemistry underlies the structure of endofungal bacterial communities across fungal guilds and phylogenetic groups

    MIT student leaders go virtual with global startup competitions