in

GIS-based modelling reveals the fate of antlion habitats in the Deliblato Sands

  • 1.

    Hoekstra, J. M., Boucher, T. M., Ricketts, T. H. & Roberts, C. Confronting a biome crisis: global disparities of habitat loss and protection. Ecol. Lett. 8, 23–29 (2005).

    • Article
    • Google Scholar
  • 2.

    Werger, M. J. A. & van Staalduinen, M. A. Eurasian steppes. Ecological problems and livelihoods in a changing world. Springer, Dordrecht (2012).

  • 3.

    Cremene, C. et al. Alterations of steppe-like grasslands in Eastern Europe: a threat to regional biodiversity hotspots. Conserv. Biol. 19, 1606–1618 (2005).

    • Article
    • Google Scholar
  • 4.

    Wittig, B., Richter, Gen, Kammermann, A. & Zacharias, D. An indicator species approach for result-oriented subsides of ecological services in grasslands–a study in Northwestern Germany. Biol. Conserv. 19, 81–95 (2006).

    • Google Scholar
  • 5.

    de Bello, F., Lavorel, S., Gerhold, P., Reier, Ü. & Pärtel, M. A biodiversity monitoring framework for practical conservation of grasslands and shrublands. Biol. Conserv. 143, 9–17 (2010).

    • Article
    • Google Scholar
  • 6.

    Dengler, J., Janišová, M., Török, P. & Wellstein, C. Biodiversity of Palaearctic grasslands: a synthesis. Agric. Ecosyst. Env. 182, 1–14 (2014).

    • Article
    • Google Scholar
  • 7.

    Habel, J. C. et al. European grassland ecosystems: threatened hotspots of biodiversity. Biodivers. Conserv. 22, 2131–2138 (2013).

    • Article
    • Google Scholar
  • 8.

    Bátori, Z. et al. Diversity patterns in sandy forest-steppes: a comparative study from the western and central Palaearctic. Biodivers. Conserv. 27, 1011–1030 (2018).

    • Article
    • Google Scholar
  • 9.

    Kryštufek, B. Phenetic variation in the European souslik, Spermophilus citellus (Mammalia: Rodentia). Bonn. zool. Beitr. 46, 93–109 (1996).

    • Google Scholar
  • 10.

    Coroiu, C., Kryštufek, B., Vohralík, V. & Zagorodnyuk, I. Spermophilus citellus. The IUCN Red List of Threatened Species 2008: e.T20472A9204055, https://doi.org/10.2305/IUCN.UK.2008.RLTS.T20472A9204055.en, Downloaded on 29 November 2018 (2008).

  • 11.

    Palacín, C. & Alonso, J. C. An updated estimate of the world status and population trends of the great bustard Otis tarda. Ardeola 55, 13–25 (2008).

    • Google Scholar
  • 12.

    Cizek, L., Hauck, D. & Pokluda, P. Contrasting needs of grassland dwellers: habitat preferences of endangered steppe beetles (Coleoptera). J. Insect Conserv. 16, 281–293 (2012).

    • Article
    • Google Scholar
  • 13.

    Pokluda, P., Hauck, D. & Cizek, L. Importance of marginal habitats for grassland diversity: fallows and overgrown tall-grass steppe as key habitats of endangered ground-beetle Carabus hungaricus. Insect Conserv. Diversity 5, 27–36 (2012).

    • Article
    • Google Scholar
  • 14.

    Anderson, A., Carnus, T., Helden, A. J., Sheridan, H. & Purvis, G. The influence of conservation field margins in intensively managed grazing land on communities of five arthropod trophic groups. Insect Conserv. Diversity 6, 201–211 (2013).

    • Article
    • Google Scholar
  • 15.

    Van Swaay, C. A. M. The importance of calcareous grasslands for butterflies in Europe. Biol. Conserv. 104, 315–318 (2002).

  • 16.

    WallisDeVries, M. F., Poschlod, P. & Willems, J. H. Challenges for the conservation of calcareous grasslands in northwestern Europe: integrating the requirements of flora and fauna. Biol. Conserv. 104, 265–273 (2002).

    • Article
    • Google Scholar
  • 17.

    Woodcock, B. A. & Pywell, R. F. Effects of vegetation structure and floristic diversity on detritivore, herbivore and predatory invertebrates within calcareous grasslands. Biodivers. Conserv. 19, 81–95 (2010).

    • Article
    • Google Scholar
  • 18.

    Gepp J. Ameisenlöwen und Ameisenjungfern, Myrmeleontidae. Westarp Wissenschaften, Hohenwarsleben, (2010).

  • 19.

    Binot, M., Bless, R., Boye, P., Gruttke, H. & Pretscher, P. (eds) Rote Liste gefährdeter Tiere Deutschlands. Schriftenreihe für Landschaftspflege und Naturschutz 55, Bonn-Bad Godesberg, (1998).

  • 20.

    Zulka, K.P. Rote Listen gefährdeter Tiere Österreichs. Checklisten, Gefährdungsanalysen, Handlungsbedarf. Teil 1: Säugetiere, Vögel, Heuschrecken, Wasserkäfer, Netzflügler, Schnabelfliegen, Tagfalter. Grüne Reihe des Lebensministeriums, Band 14/1. Böhlau Verlag, Wien. (2005).

  • 21.

    Anonymous. Habsburg Empire (1806–1869) – Second Military Survey of the Habsburg Empire: https://mapire.eu/en/browse/country/secondsurvey/, Accessed on 31 August 2018

  • 22.

    Anonymous. Habsburg Empire (1763–1787) – First Military Survey, https://mapire.eu/en/browse/country/firstsurvey/, Accessed on 31 August 2018.

  • 23.

    Španović, T. Deliblatski pijesak. Les sables de Deliblato. Šumarski List. – Rev. Forestière 60, 27–46 (1936a).

    • Google Scholar
  • 24.

    Španović, T. Deliblatski pijesak. Svršetak. Les sables de Deliblato. Suite et fin. Šumarski List. – Rev. Forestière 60, 583–631 (1936b).

    • Google Scholar
  • 25.

    Gepp, J. Neuropteren als Indikatoren der Naturraumbewertung. Eignung als Modellgruppe, Methodenwahl, Fallbeispiele sowie Diskussion möglicher Fragestellungen (Neuropterida). Stapfia 138, 167–208 (1999).

    • Google Scholar
  • 26.

    Mansell, M. W. & Erasmus, B. F. N. Southern African biomes and the evolution of Palparini (Insecta: Neuroptera: Myrmeleontidae). Acta Zool Acad Sci Hung 48(Suppl 2), 175–184 (2002).

  • 27.

    Mansell, M. W. The ant-lions of southern Africa: genus Pamexis Hagen (Neuroptera: Myrmeleontidae: Palparinae: Palparini). Syst. Entomol. 17, 65–78 (2002a).

    • Article
    • Google Scholar
  • 28.

    Freitag, S. & Mansell, M. W. The distribution and protection status of selected antlion species (Neuroptera: Myrmeleontidae) in South Africa. Afr. Entomol. 5, 205–216 (1997).

    • Google Scholar
  • 29.

    Mansell, M. W. Monitoring lacewings (Insecta: Neuroptera) in southern Africa. Acta Zool. Acad. Sci. Hung. 48(Suppl 2), 165–173 (2002b).

    • ADS
    • Google Scholar
  • 30.

    Wedding, L. M., Maxwell, S. M., Hyrenbach, D. & Dunn, D. C. and others. Geospatial approaches to support pelagic conservation planning and adaptive management. Endang Species Res. 30, 1–9, https://doi.org/10.3354/esr00716 (2016).

    • Article
    • Google Scholar
  • 31.

    Brown, J. L. & Yoder, A. D. Shifting ranges and conservation challenges for lemurs in the face of climate change. Ecol. Evol. 5, 1131–1142, https://doi.org/10.1002/ece3.1418 (2015).

  • 32.

    Walston, L. J. & Hartmann, H. M. Development of a landscape integrity model framework to support regional conservation planning. PLoS One 13(4), e0195115, https://doi.org/10.1371/journal.pone.0195115 (2018).

  • 33.

    Stange, L. A. A systematic catalog, bibliography and classification of the world antlions (Insecta: Neuroptera: Myrmeleontidae). Mem. Am. Entomol. Inst. 74, 1–565 (2004).

    • Google Scholar
  • 34.

    Badano, D. & Pantaleoni, R. A. The larvae of European Myrmeleontidae (Neuroptera). Zootaxa 3762, 1–71 (2014).

    • Article
    • Google Scholar
  • 35.

    Aspöck, H., Aspöck, U., Hölzel, H., Rausch, H. Die Neuropteren Europas. 2 Vols. Goecke & Evers, Krefeld, (1980).

  • 36.

    Eastman, J. R. TerrSet. Worcester, Clark University, (2017).

  • 37.

    Sanderson, B. M., Knutti, R. & Caldwell, P. A Representative Democracy to Reduce Interdependency in a Multimodel Ensemble. J. Clim. 28, 5171–5194 (2015).

  • 38.

    Tucker, C. J. Red and photographic infrared linear combinations for monitoring vegetation. Remote. Sens. Env. 8, 27–150 (1979).

    • Google Scholar
  • 39.

    Gallo, K. P., Owen, T. W., Easterling, D. R. & Jamason, P. F. Temperature trends of the U.S. Historical Climatology Network based on satellite-designated land use/land cover. J Climate 12, 1344, doi:10.1175/1520- 0442(1999)012<2.0.CO;2 (1999).

  • 40.

    ESRI. ArcGIS Desktop: Release 10.5. Environmental Systems Research Institute, Redlands, (2018).

  • 41.

    Kumar, S. & Stohlgren, T. J. Maxent modeling for predicting suitable habitat for threatened and endangered tree Canacomyrica monticola in New Caledonia. J. Ecol. Nat. Env. 4, 94–98 (2009).

    • Google Scholar
  • 42.

    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, URL, http://www.R-project.org/ (2013).

  • 43.

    Jenness, J. Repeating shapes for ArcGIS. Jenness Enterprises. Available at, http://www.jennessent.com/arcgis/repeat_shapes.htm (2012).

  • 44.

    Nosetto, M. D., Jobbágy, E. G. & Paruelo, J. M. Land-use change and water losses: the case of grassland afforestation across a soil textural gradient in central Argentina. Glob. Change Biol. 11, 1101–1117, https://doi.org/10.1111/j.1365-2486.2005.00975.x (2005).

  • 45.

    Kaligarič, M., Čuš, J., Škornik, S. & Ivajnšič, D. The failure of agri-environment measures to promote and conserve grassland biodiversity in Slovenia. Land. use policy 80, 127–134 (2019).

    • Article
    • Google Scholar
  • 46.

    Duelli, P. & Obrist, M. K. Biodiversity indicators: the choice of values and measures. Agric. Ecosyst. Env. 98, 87–98 (2003).

    • Article
    • Google Scholar
  • 47.

    Pipenbaher, N., Kaligarič, M., Mason, N. W. H. & Škornik, S. Dry calcareous grasslands from two neighboring biogeographic regions: relationship between plant traits and rarity. Biodivers. Conserv. 22(10), 2207–2221 (2013).

    • Article
    • Google Scholar
  • 48.

    Brtek, J. Príspevok k poznatkom o rozšírení mravcolevov na Slovensku. Acta rer nat. Mus. slov. 7, 119–124 (1961).

    • Google Scholar
  • 49.

    Grozdanić, S. & Stevanović, A. Beitrag zur Kenntnis der Ameisenlöwen in Jugoslawien. Bull. Acad. Serbe Sci. Arts, Cl. Sci Math. Nat. 6(12), 69–71 (1969).

    • Google Scholar
  • 50.

    Sziráki, G., Ábrahám, L., Szentkirályi, F. & Papp, Z. A check-list of the Hungarian Neuropteroidea (Megaloptera, Raphidioptera, Planipennia). Folia Entomol. Hung. 52, 113–118 (1992).

    • Google Scholar
  • 51.

    Szentkirályi, F. & Kazinczy, L. Seasonal flight patterns of antlions (Neuroptera, Myrmeleontidae) monitored by the Hungarian light trap network. Acta Zool. Acad. Sci. Hung. 48(Suppl 2), 311–328 (2002).

    • Google Scholar
  • 52.

    Dobosz, R. Myrmeleon (Morter) inconspicuus Rambur, 1842. Mrówkolew południowy. In: Głowaciński, Z. & Nowacki J. (eds.) Polska Czerwona Księga Zwierząt. Bezkręgowce, IOP PAN Kraków & AR Poznań, p 86, (2004b).

  • 53.

    Ábrahám, L. Natural protection studies on the neuropteroids (Megaloptera, Raphidioptera, Neuroptera) fauna of the Duna-Dráva National Park, II. Dunántúli Dolgozatok Természetudományi Sor. 9, 53–70 (1998).

    • Google Scholar
  • 54.

    Blaik, T. & Dobosz, R. Lacewings (Neuroptera) of the Polish Baltic coast with remarks on Wesmaelius (Kimminsia) balticus (Tjeder, 1931) – a new species of Hemerobiidae to the fauna of Poland. In: Devetak, D., Lipovšek, S. & Arnett, A. E. (eds.) Proceedings of the Tenth International Symposium on Neuropterology, 2008. FNM, Maribor, pp 97–112, (2010).

  • 55.

    Szentkirályi, F., Markó, V., Kazinczy, L., Kovács, É. When the antlions fall into a pit: pitfall trappings in sandy grasslands. In: Devetak, D., Lipovšek, S., Arnett, A. E. (eds.) Proceedings of the Tenth International Symposium on Neuropterology, 2008. FNM, Maribor, pp 277–286, (2010).

  • 56.

    Denner, F. Myrmeleon bore (Tjeder, 1941) und Myrmeleon inconspicuus Rambur, 1842 (Neuroptera: Myrmeleontidae) neu für Niederösterreich. Beitr. Entomofaun 16, 21–29 (2015).

    • Google Scholar
  • 57.

    Ábrahám, L. Checklist of the neuropteroid fauna of Somogy county (Megaloptera, Raphidioptera, Neuroptera). Nat. Somogyiensis 1, 253–260 (2001).

    • Google Scholar
  • 58.

    Dobosz, R. Two species of lacewings (Neuropteroidae) from Białowieża Primaeval Forest new to the fauna of Poland. Acta Entomol. Siles 4, 19–23 (1996).

    • Google Scholar
  • 59.

    Devetak, D. Palpares libelluloides (Linnaeus, 1764) in the northwestern part of the Balkan Peninsula (Neuroptera: Myrmeleontidae). Annales, Annals for Istrian and Mediterranean. Studies 9, 211–216 (1996).

    • Google Scholar
  • 60.

    Kadović, R., Spasov, P., Ali Bohajar, Y. M., Belanović Simić, S. & Košanin, O. Analysis of aridity indicators in the Deliblato Sands. Bull. Fac. For. 109, 97–112 (2014).

    • Google Scholar
  • 61.

    Feurdean, A., Ruprecht, E., Molnár, Z., Hutchinson, S. M. & Hickler, T. Biodiversity-rich European grasslands: ancient, forgotten ecosystems. Biol. Conserv. 228, 224–232 (2018).

    • Article
    • Google Scholar
  • 62.

    Bond, W. J. & Keeley, J. E. Fire as a global ‘herbivore’: the ecology and evolution of flammable ecosystems. Trends Ecol. Evol. 20, 387–394 (2005).

  • 63.

    Bond, W. J. & Archibald, S. Confronting complexity: fire policy choices in South African savanna parks. Int. J. Wildl. Fire 12, 381–389 (2003).

    • Article
    • Google Scholar
  • 64.

    Valkó, O. et al. Supporting biodiversity by prescribed burning in grasslands — A multi-taxa approach. Sci. Total. Env. 572, 1377–1384 (2016).

  • 65.

    Pipenbaher, N., Škornik, S., Carvalho, G. H. & Batalha, M. A. Phylogenetic and functional relationships in pastures and meadows from the North Adriatic Karst. Plant. Ecol. 214(4), 501–519 (2013).

    • Article
    • Google Scholar

  • Source: Ecology - nature.com

    Impact of molasses and microbial inoculants on fermentation quality, aerobic stability, and bacterial and fungal microbiomes of barley silage

    The nature of deep overturning and reconfigurations of the silicon cycle across the last deglaciation