in

Global priority areas for ecosystem restoration

  • 1.

    IPBES. Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES Secretariat, 2019).

  • 2.

    IPCC. An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes In Terrestrial Ecosystems (SRCCL) (World Meteorological Organization, 2019).

  • 3.

    Di Marco, M., Ferrier, S., Harwood, T. D., Hoskins, A. J. & Watson, J. E. M. Wilderness areas halve the extinction risk of terrestrial biodiversity. Nature 573, 582–585 (2019).

    ADS  Article  Google Scholar 

  • 4.

    Maron, M., Simmonds, J. S. & Watson, J. E. M. Bold nature retention targets are essential for the global environment agenda. Nat. Ecol. Evol. 2, 1194–1195 (2018).

    Article  Google Scholar 

  • 5.

    IPBES. The IPBES Assessment Report on Land Degradation and Restoration (IPBES Secretariat, 2018).

  • 6.

    Bastin, J. F. et al. The global tree restoration potential. Science 365, 76–79 (2019).

    ADS  CAS  Article  Google Scholar 

  • 7.

    Chazdon, R. & Brancalion, P. Restoring forests as a means to many ends. Science 365, 24–25 (2019).

    ADS  CAS  Article  Google Scholar 

  • 8.

    Temperton, V. M. et al. Step back from the forest and step up to the Bonn challenge: how a broad ecological perspective can promote successful landscape restoration. Restor. Ecol. 27, 705–719 (2019).

    Google Scholar 

  • 9.

    Strassburg, B. B. N. et al. Strategic approaches to restoring ecosystems can triple conservation gains and halve costs. Nat. Ecol. Evol. 3, 62–70 (2019).

    Article  Google Scholar 

  • 10.

    Brancalion, P. H. S. et al. Global restoration opportunities in tropical rainforest landscapes. Sci. Adv. 5, eaav3223 (2019).

    ADS  Article  Google Scholar 

  • 11.

    Mappin, B. et al. Restoration priorities to achieve the global protected area target. Conserv. Lett. 12, e12646 (2019).

    Article  Google Scholar 

  • 12.

    Brooks, T. M. et al. Global biodiversity conservation priorities. Science 313, 58–61 (2006).

    ADS  CAS  Article  Google Scholar 

  • 13.

    Joppa, L. N., Visconti, P., Jenkins, C. N. & Pimm, S. L. Achieving the convention on biological diversity’s goals for plant conservation. Science 341, 1100–1103 (2013).

    ADS  CAS  Article  Google Scholar 

  • 14.

    Montesino Pouzols, F. et al. Global protected area expansion is compromised by projected land-use and parochialism. Nature 516, 383–386 (2014).

    ADS  CAS  Article  Google Scholar 

  • 15.

    Ando, A., Camm, J., Polasky, S. & Solow, A. Species distributions, land values, and efficient conservation. Science 279, 2126–2128 (1998).

    ADS  CAS  Article  Google Scholar 

  • 16.

    Naidoo, R. et al. Global mapping of ecosystem services and conservation priorities. Proc. Natl Acad. Sci. USA 105, 9495–9500 (2008).

    ADS  CAS  Article  Google Scholar 

  • 17.

    Beyer, H. L., Dujardin, Y., Watts, M. E. & Possingham, H. P. Solving conservation planning problems with integer linear programming. Ecol. Modell. 328, 14–22 (2016).

    Article  Google Scholar 

  • 18.

    Cabeza, M. & Moilanen, A. Design of reserve networks and the persistence of biodiversity. Trends Ecol. Evol. 16, 242–248 (2001).

    CAS  Article  Google Scholar 

  • 19.

    European Space Agency. Climate Change Initiative (ESA CCI). https://www.esa-landcover-cci.org/?q=node/158 (accessed May 2018).

  • 20.

    Veldman, J. W. et al. Where tree planting and forest expansion are bad for biodiversity and ecosystem services. Bioscience 65, 1011–1018 (2015).

    Article  Google Scholar 

  • 21.

    Thomas, C. D. et al. Extinction risk from climate change. Nature 427, 145–148 (2004).

    ADS  CAS  Article  Google Scholar 

  • 22.

    Strassburg, B. B. N. et al. Impacts of incentives to reduce emissions from deforestation on global species extinctions. Nat. Clim. Chang. 2, 350–355 (2012).

    ADS  CAS  Article  Google Scholar 

  • 23.

    Strassburg, B. B. N. et al. Moment of truth for the Cerrado hotspot. Nat. Ecol. Evol. 1, 0099 (2017).

    Article  Google Scholar 

  • 24.

    IUCN. The IUCN Red List of Threatened Species. Version 2019-3 http://www.iucnredlist.org (accessed 10 December 2019).

  • 25.

    Brooks, T. M. et al. Measuring terrestrial area of habitat (AOH) and its utility for the IUCN Red List. Trends Ecol. Evol. 34, 977–986 (2019).

    Article  Google Scholar 

  • 26.

    Erb, K.-H. et al. Unexpectedly large impact of forest management and grazing on global vegetation biomass. Nature 553, 73–76 (2018).

    ADS  CAS  Article  Google Scholar 

  • 27.

    Sanderman, J., Hengl, T. & Fiske, G. J. Soil carbon debt of 12,000 years of human land use. Proc. Natl Acad. Sci. USA 114, 9575–9580 (2017).

    CAS  Article  Google Scholar 

  • 28.

    IPCC. in Global Warming of 1.5°C (eds Masson-Delmotte, V. et al.) 3–24 (World Meteorological Organization, 2018).

  • 29.

    Poorter, L. et al. Biomass resilience of Neotropical secondary forests. Nature 530, 211–214 (2016).

    ADS  CAS  Article  Google Scholar 

  • 30.

    Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).

    ADS  CAS  Article  Google Scholar 

  • 31.

    Strassburg, B. B. N. et al. Increasing Agricultural Output While Avoiding Deforestation—A Case Study for Mato Grosso, Brazil (International Institute for Sustainability, 2012).

  • 32.

    Latawiec, A. E., Strassburg, B. B. N., Brancalion, P. H. S., Rodrigues, R. R. & Gardner, T. Creating space for large-scale restoration in tropical agricultural landscapes. Front. Ecol. Environ. 13, 211–218 (2015).

    Article  Google Scholar 

  • 33.

    Anderson, C. B. et al. Determining nature’s contributions to achieve the sustainable development goals. Sustain. Sci. 14, 543–547 (2019).

    Article  Google Scholar 

  • 34.

    Martín-López, B. et al. Nature’s contributions to people in mountains: a review. PLoS ONE 14, e0217847 (2019).

    Article  Google Scholar 

  • 35.

    Latawiec, A. E., Strassburg, B. B. N., Valentim, J. F., Ramos, F. & Alves-Pinto, H. N. Intensification of cattle ranching production systems: socioeconomic and environmental synergies and risks in Brazil. Animal 8, 1255–1263 (2014).

    CAS  Article  Google Scholar 

  • 36.

    Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).

    ADS  CAS  Article  Google Scholar 

  • 37.

    Balmford, A. et al. The environmental costs and benefits of high-yield farming. Nat. Sustain. 1, 477–485 (2018).

    Article  Google Scholar 

  • 38.

    Garnett, T. et al. Sustainable intensification in agriculture: premises and policies. Science 341, 33–34 (2013).

    ADS  CAS  Article  Google Scholar 

  • 39.

    Erb, K.-H. et al. Exploring the biophysical option space for feeding the world without deforestation. Nat. Commun. 7, 11382 (2016).

    ADS  CAS  Article  Google Scholar 

  • 40.

    Reyes-García, V. et al. The contributions of Indigenous Peoples and local communities to ecological restoration. Restor. Ecol. 27, 3–8 (2019).

    Article  Google Scholar 

  • 41.

    Possingham, H. P., Bode, M. & Klein, C. J. Optimal conservation outcomes require both restoration and protection. PLoS Biol. 13, e1002052 (2015).

    Article  Google Scholar 

  • 42.

    Beresford, A. et al. Minding the protection gap: estimates of species’ range sizes and holes in the protected area network. Anim. Conserv. 14, 114–116 (2011).

    Article  Google Scholar 

  • 43.

    Rondinini, C. et al. Global habitat suitability models of terrestrial mammals. Phil. Trans. R. Soc. Lond. B 366, 2633–2641 (2011).

    Article  Google Scholar 

  • 44.

    Di Marco, M. et al. Synergies and trade-offs in achieving global biodiversity targets. Conserv. Biol. 30, 189–195 (2016).

    Article  Google Scholar 

  • 45.

    Betts, M. G. et al. Global forest loss disproportionately erodes biodiversity in intact landscapes. Nature 547, 441–444 (2017).

    CAS  Article  Google Scholar 

  • 46.

    Venter, O. et al. Targeting global protected area expansion for imperiled biodiversity. PLoS Biol. 12, e1001891 (2014).

    Article  Google Scholar 

  • 47.

    Joppa, L. N. et al. Filling in biodiversity threat gaps. Science 352, 416–418 (2016).

    ADS  CAS  Article  Google Scholar 

  • 48.

    Knight, A. T., Cowling, R. M. & Campbell, B. M. An operational model for implementing conservation action. Conserv. Biol. 20, 408–419 (2006).

    Article  Google Scholar 

  • 49.

    Ban, N. C. et al. A social–ecological approach to conservation planning: embedding social considerations. Front. Ecol. Environ. 11, 194–202 (2013).

    Article  Google Scholar 

  • 50.

    Halpern, B. S. et al. Achieving the triple bottom line in the face of inherent trade-offs among social equity, economic return, and conservation. Proc. Natl Acad. Sci. USA 110, 6229–6234 (2013).

    ADS  CAS  Article  Google Scholar 

  • 51.

    Dinerstein, E. et al. An ecoregion-based approach to protecting half the terrestrial realm. Bioscience 67, 534–545 (2017).

    Article  Google Scholar 

  • 52.

    Robinson, T. P. et al. Mapping the global distribution of livestock. PLoS ONE 9, e96084 (2014).

    ADS  Article  Google Scholar 

  • 53.

    Gibbs, H. K., Brown, S., Niles, J. O. & Foley, J. A. Monitoring and estimating tropical forest carbon stocks: making REDD a reality. Environ. Res. Lett. 2, 045023 (2007).

    ADS  Article  Google Scholar 

  • 54.

    Baccini, A. et al. Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nat. Clim. Chang. 2, 182–185 (2012).

    ADS  CAS  Article  Google Scholar 

  • 55.

    Saatchi, S. S. et al. Benchmark map of forest carbon stocks in tropical regions across three continents. Proc. Natl Acad. Sci. USA 108, 9899–9904 (2011).

    ADS  CAS  Article  Google Scholar 

  • 56.

    Erb, K.-H. et al. A comprehensive global 5 min resolution land-use data set for the year 2000 consistent with national census data. J. Land Use Sci. 2, 191–224 (2007).

    Article  Google Scholar 

  • 57.

    IPCC. Guidelines for National Greenhouse Gas Inventories (National Greenhouse Gas Inventories Programme, 2006).

  • 58.

    Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on earth: a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. Bioscience 51, 933–938 (2001).

    Article  Google Scholar 

  • 59.

    Harrell, F. E. Jr et al. Hmisc: Harrell Miscellaneous. R package version 4.1-1. https://cran.r-project.org/web/packages/Hmisc/Hmisc.pdf (2018).

  • 60.

    Goldewijk, K. K., Beusen, A., Van Drecht, G. & De Vos, M. The HYDE 3.1 spatially explicit database of human-induced global land-use change over the past 12,000 years. Glob. Ecol. Biogeogr. 20, 73–86 (2011).

    Article  Google Scholar 

  • 61.

    Fonseca, W. et al. Carbon accumulation in the biomass and soil of different aged secondary forests in the humid tropics of Costa Rica. For. Ecol. Manage. 262, 1400–1408 (2011).

    Article  Google Scholar 

  • 62.

    Guo, L. B. & Gifford, R. M. Soil carbon stocks and land use change: a meta analysis. Glob. Change Biol. 8, 345–360 (2002).

    ADS  Article  Google Scholar 

  • 63.

    Yang, Y., Tilman, D., Furey, G. & Lehman, C. Soil carbon sequestration accelerated by restoration of grassland biodiversity. Nat. Commun. 10, 718 (2019).

    ADS  Article  Google Scholar 

  • 64.

    Mitchard, E. T. et al. Uncertainty in the spatial distribution of tropical forest biomass: a comparison of pan-tropical maps. Carbon Balance Manag. 8, 10 (2013).

    Article  Google Scholar 

  • 65.

    Hengl, T. et al. SoilGrids250m: global gridded soil information based on machine learning. PLoS ONE 12, e0169748 (2017).

    Article  Google Scholar 

  • 66.

    BirdLife International & NatureServe. Bird Species Distribution Maps of the World. Version 2018.1 http://datazone.birdlife.org/species/requestdis (BirdLife International and Handbook of the Birds of the World, 2018).

  • 67.

    Beresford, A. et al. Poor overlap between the distribution of protected areas and globally threatened birds in Africa. Anim. Conserv. 14, 99–107 (2011).

    Article  Google Scholar 

  • 68.

    Staude, I. R. et al. Range size predicts the risk of local extinction from habitat loss. Glob. Ecol. Biogeogr. 29, 16–25 (2020).

    Article  Google Scholar 

  • 69.

    Carrasco, L. R., Webb, E. L., Symes, W. S., Koh, L. P. & Sodhi, N. S. Global economic trade-offs between wild nature and tropical agriculture. PLoS Biol. 15, e2001657 (2017).

    Article  Google Scholar 

  • 70.

    Naidoo, R & Iwamura, T. Global-scale mapping of economic benefits from agricultural lands: implications for conservation priorities. Biol. Conserv. 140, 40–49 (2007).

    Article  Google Scholar 

  • 71.

    Polasky, S. et al. Where to put things? Spatial land management to sustain biodiversity and economic returns. Biol. Conserv. 141, 1505–1524 (2008).

    Article  Google Scholar 

  • 72.

    Sulser, T. B. et al. in Beyond a Middle Income Africa: Transforming African Economies for Sustained Growth with Rising Employment and Incomes (ReSAKSS Annual Trends and Outlook Report 2014 (eds. Badiane, O. et al.) Ch. 2 (International Food Policy Research Institute (IFPRI), 2014).

  • 73.

    Robinson, S. et al. The International Model for Policy Analysis of Agricultural Commodities and Trade (IMPACT): Model Description for Version 3 (IFPRI Discussion Paper 1483) (International Food Policy Research Institute (IFPRI), (2015).

  • 74.

    IIASA & FAO. Global Agro-ecological Zones (GAEZ v.3.0) (IIASA & FAO, 2012).

  • 75.

    Hoppe, R. A. Structure and Finances of U.S. Farms: Family Farm Report (EIB-132) (US Department of Agriculture Economic Research Service, 2014).

  • 76.

    Baležentis, T. et al. Decomposing dynamics in the farm profitability: an application of index decomposition analysis to Lithuanian FADN sample. Sustainability 11, 2861 (2019).

    Article  Google Scholar 

  • 77.

    Statistic Canada. Table 32-10-0136-01, Farm Operating Revenues and Expenses, Annual. https://open.canada.ca/data/en/dataset/59ca6332-391b-4fdf-bb3a-31e5e45f6bb7 (2008).

  • 78.

    De Groot, R. S. et al. Benefits of investing in ecosystem restoration. Conserv. Biol. 27, 1286–1293 (2013).

    Article  Google Scholar 

  • 79.

    International Labour Organization. ILOSTAT database. https://ilostat.ilo.org/data (accessed March 2020).

  • 80.

    United Nations Statistics Division. UN Comtrade Database. https://comtrade.un.org/ (accessed March 2020).

  • 81.

    Brancalion, P. H. S. et al. What makes ecosystem restoration expensive? A systematic cost assessment of projects in Brazil. Biol. Conserv. 240, 108274 (2019).

    Article  Google Scholar 

  • 82.

    Mueller, N. D. et al. Closing yield gaps through nutrient and water management. Nature 490, 254–257 (2012).

    ADS  CAS  Article  Google Scholar 

  • 83.

    Mueller, N. D. et al. Declining spatial efficiency of global cropland nitrogen allocation. Glob. Biogeochem. Cycles 31, 245–257 (2017).

    ADS  CAS  Google Scholar 

  • 84.

    Foley, J. A. et al. Solutions for a cultivated planet. Nature 478, 337–342 (2011).

    ADS  CAS  Article  Google Scholar 

  • 85.

    Hornik, K. et al. SYMPHONY in R, an R interface to the SYMPHONY solver for mixed-integer linear programs. http://R-Forge.R-project.org/projects/rsymphony/ (2019).

  • 86.

    Popp, A. et al. Land-use futures in the shared socio-economic pathways. Glob. Environ. Change 42, 331–345 (2017).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    Superconductor technology for smaller, sooner fusion

    Solar-powered system extracts drinkable water from “dry” air