in

Global synthesis of effects of plant species diversity on trophic groups and interactions

  • 1.

    Li, L., Tilman, D., Lambers, H. & Zhang, F. S. Plant diversity and overyielding: insights from belowground facilitation of intercropping in agriculture. New Phytol. 203, 63–69 (2014).

  • 2.

    Tilman, D., Reich, P. B. & Knops, J. M. Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature 441, 629–632 (2006).

  • 3.

    Isbell, F. et al. Benefits of increasing plant diversity in sustainable agroecosystems. J. Ecol. 105, 871–879 (2017).

    • Article
    • Google Scholar
  • 4.

    Huang, Y. et al. Impacts of species richness on productivity in a large-scale subtropical forest experiment. Science 362, 80–83 (2018).

  • 5.

    Cardinale, B. J., Ives, A. R. & Inchausti, P. Effects of species diversity on the primary productivity of ecosystems: extending our spatial and temporal scales of inference. Oikos 104, 437–450 (2010).

    • Article
    • Google Scholar
  • 6.

    Bright, M. B. H. et al. Long-term Piliostigma reticulatum intercropping in the Sahel: crop productivity, carbon sequestration, nutrient cycling, and soil quality. Agric. Ecosyst. Environ. 242, 9–22 (2017).

    • Article
    • Google Scholar
  • 7.

    Damien, M. et al. Flowering crops in winter increases pest control but not trophic link diversity. Agric. Ecosyst. Environ. 247, 418–425 (2017).

    • Article
    • Google Scholar
  • 8.

    Wan, N. F. et al. Increasing plant diversity with border crops reduces insecticide use and increases crop yield in urban agriculture. eLife 7, e35103 (2018).

  • 9.

    Macfadyen, S. et al. Do differences in food web structure between organic and conventional farms affect the ecosystem service of pest control? Ecol. Lett. 12, 229–238 (2009).

  • 10.

    Dainese, M. et al. A global synthesis reveals biodiversity-mediated benefits for crop production. Sci. Adv. 5, eaax0121 (2019).

  • 11.

    Loreau, M. & Hector, A. Partitioning selection and complementarity in biodiversity experiments. Nature 412, 72–76 (2001).

  • 12.

    Frank, K. T., Petrie, B., Choi, J. S. & Leggett, W. C. Trophic cascades in a formerly cod-dominated ecosystem. Science 308, 1621–1623 (2005).

  • 13.

    Knight, T. M., Mccoy, M. W., Chase, J. M., McCoy, K. A. & Holt, R. D. Trophic cascades across ecosystems. Nature 437, 880–883 (2005).

  • 14.

    Start, D. & Gilbert, B. Predator personality structures prey communities and trophic cascades. Ecol. Lett. 20, 366–374 (2017).

  • 15.

    Scherber, C. et al. Bottom-up effects of plant diversity on multitrophic interactions in a biodiversity experiment. Nature 468, 553–556 (2010).

  • 16.

    Ebeling, A. et al. Plant diversity effects on arthropods and arthropod-dependent ecosystem functions in a biodiversity experiment. Basic Appl. Ecol. 26, 50–63 (2018).

    • Article
    • Google Scholar
  • 17.

    Bischoff, A. et al. Effects of spontaneous field margin vegetation and surrounding landscape on Brassica oleracea crop herbivory. Agric. Ecosyst. Environ. 223, 135–143 (2016).

    • Article
    • Google Scholar
  • 18.

    Wan, N. F. et al. Plant diversification promotes biocontrol services in peach orchards by shaping the ecological niches of insect herbivores and their natural enemies. Ecol. Indic. 99, 387–392 (2019).

    • Article
    • Google Scholar
  • 19.

    Hector, A. et al. Plant diversity and productivity experiments in European grasslands. Science 286, 1123–1127 (1999).

  • 20.

    Seabloom, E. W. et al. Food webs obscure the strength of plant diversity effects on primary productivity. Ecol. Lett. 20, 505–512 (2017).

  • 21.

    Litsinger, J. A., Hasse, V., Barrion, A. T. & Schmutterer, H. Response of Ostrinia furnacalis (Guenée) (Lepidoptera: Pyralidae) to intercropping. Environ. Entomol. 20, 988–1004 (1991).

    • Article
    • Google Scholar
  • 22.

    Hooks, C. R. R. & Johnson, M. W. Lepidopteran pest populations and crop yields in row intercropped broccoli. Agric. Forest Entomol. 4, 117–125 (2002).

    • Article
    • Google Scholar
  • 23.

    Nitschke, N. et al. Plant diversity has contrasting effects on herbivore and parasitoid abundance in Centaurea jacea flower heads. Ecol. Evol. 7, 9319–9332 (2017).

  • 24.

    Moreira, X. et al. Plant diversity effects on insect herbivores and their natural enemies: current thinking, recent findings, and future directions. Curr. Opin. Insect Sci. 14, 1–7 (2016).

  • 25.

    Gurevitch, J., Koricheva, J., Nakagawa, S. & Stewart, G. Meta-analysis and the science of research synthesis. Nature 555, 175–182 (2018).

  • 26.

    Chaplin-Kramer, R., O’Rourke, M. E., Blitzer, E. J. & Kremen, C. A meta-analysis of crop pest and natural enemy response to landscape complexity. Ecol. Lett. 14, 922–932 (2011).

  • 27.

    Shackelford, G. et al. Comparison of pollinators and natural enemies: a meta-analysis of landscape and local effects on abundance and richness in crops. Biol. Rev. 88, 1002–1021 (2013).

  • 28.

    Letourneau, D. K. et al. Does plant diversity benefit agroecosystems? A synthetic review. Ecol. Appl. 21, 9–21 (2011).

  • 29.

    Dassou, A. G. & Tixier, P. Response of pest control by generalist predators to local-scale plant diversity: a meta-analysis. Ecol. Evol. 6, 1143–1153 (2016).

  • 30.

    Greenstone, M. H., Cornelius, M. L., Olsen, R. T. & Payton, M. E. Test of a natural enemy hypothesis on plant provenance: spider abundance in native and exotic ornamental landscapes. J. Entomol. Sci. 52, 340–351 (2017).

    • Article
    • Google Scholar
  • 31.

    Novais, S. M. A., Macedo-Reis, L. E. & Neves, F. S. Predatory beetles in cacao agroforestry systems in Brazilian Atlantic forest: a test of the natural enemy hypothesis. Agroforestry Syst. 91, 201–209 (2017).

    • Article
    • Google Scholar
  • 32.

    Root, R. B. Organization of a plant–arthropod association in simple and diverse habitats: the fauna of collards (Brassica oleracea). Ecol. Monogr. 43, 95–124 (1973).

    • Article
    • Google Scholar
  • 33.

    Long, Z. T., Mohler, C. L. & Carson, W. P. Extending the resource concentration hypothesis to plant communities: effects of litter and herbivores. Ecology 84, 652–665 (2003).

    • Article
    • Google Scholar
  • 34.

    Ebeling, A., Klein, A. M., Schumacher, J., Weisser, W. W. & Tscharntke, T. How does plant richness affect pollinator richness and temporal stability of flower visits? Oikos 117, 1808–1815 (2008).

    • Article
    • Google Scholar
  • 35.

    Ebeling, A. et al. Plant diversity impacts decomposition and herbivory via changes in aboveground arthropods. PLoS ONE 9, e106529 (2014).

  • 36.

    Bernays, E. A., Bright, K. L., Gonzalez, N. & Angel, J. Dietary mixing in a generalist herbivore: tests of two hypotheses. Ecology 75, 1997–2006 (1994).

    • Article
    • Google Scholar
  • 37.

    Srivastava, D. S. & Lawton, J. H. Why more productive sites have more species: an experimental test of theory using tree-hole communities. Am. Nat. 152, 510–529 (1998).

  • 38.

    Janssen, A., Sabelis, M. W., Magalhães, S., Montserrat, M. & Van der Hammen, T. Habitat structure affects intraguild predation. Ecology 88, 2713–2719 (2007).

  • 39.

    Coll, M. & Bottrell, D. G. Effects of nonhost plant on an insect herbivore in diverse habitats. Ecology 75, 723–731 (1994).

    • Article
    • Google Scholar
  • 40.

    Petermann, J. S., Müller, C. B., Weigelt, A., Weisser, W. W. & Schmid, B. Effect of plant species loss on aphid–parasitoid communities. J. Anim. Ecol. 79, 709–720 (2010).

  • 41.

    Karp, D. S. et al. Crop pests and predators exhibit inconsistent responses to surrounding landscape composition. Proc. Natl Acad. Sci. USA 115, 7863–7870 (2018).

  • 42.

    Martin, E. A. et al. The interplay of landscape composition and configuration: new pathways to manage functional biodiversity and agroecosystem services across Europe. Ecol. Lett. 22, 1047–1175 (2019).

    • Article
    • Google Scholar
  • 43.

    Sirami, E. et al. Increasing crop heterogeneity enhances multitrophic diversity across agricultural regions. Proc. Natl Acad. Sci. USA 116, 16442–16447 (2019).

  • 44.

    Lu, M. et al. Responses of ecosystem nitrogen cycle to nitrogen addition: a meta-analysis. New Phytol. 189, 1040–1050 (2011).

  • 45.

    Treseder, K. K. Nitrogen additions and microbial biomass: a meta-analysis of ecosystem studies. Ecol. Lett. 11, 1111–1120 (2008).

  • 46.

    Liu, L. L. & Greaver, T. L. A global perspective on belowground carbon dynamics under nitrogen enrichment. Ecol. Lett. 13, 819–828 (2010).

  • 47.

    Liao, C. et al. Altered ecosystem carbon and nitrogen cycles by plant invasion: a meta-analysis. New Phytol. 177, 706–714 (2008).

  • 48.

    Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 36, 1–48 (2010).

    • Article
    • Google Scholar
  • 49.

    Nakagawa, S. & Santos, E. S. Methodological issues and advances in biological meta-analysis. Evol. Ecol. 26, 1253–1274 (2012).

    • Article
    • Google Scholar
  • 50.

    Shipley, B. Confirmatory path analysis in a generalized multilevel context. Ecology 90, 363–368 (2009).

  • 51.

    Begg, C. B. & Mazumdar, M. Operating characteristics of a rank correlation test for publication bias. Biometrics 50, 1088–1101 (1994).

  • 52.

    Duval, S. & Tweedie, R. Trim and fill: a simple funnel-plot–based method of testing and adjusting for publication bias in meta-analysis. Biometrics 56, 455–463 (2000).

  • 53.

    Rosenberg, M. S. The file-drawer problem revisited: a general weighted method for calculating fail-safe numbers in meta-analysis. Evolution 59, 464–468 (2005).

  • 54.

    R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2018).

  • 55.

    Lefcheck, J. S. piecewiseSEM: piecewise structural equation modeling in R for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573–579 (2015).

    • Article
    • Google Scholar
  • 56.

    Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R Core Team nlme: Linear and nonlinear mixed effects models. R package version 3.1–137 https://CRAN.R-project.org/package=nlme (2018).


  • Source: Ecology - nature.com

    Hitchhiking, collapse, and contingency in phage infections of migrating bacterial populations

    Technique could enable cheaper fertilizer production