in

Gram-positive bacteria control the rapid anabolism of protein-sized soil organic nitrogen compounds questioning the present paradigm

  • 1.

    Paustian, K. et al. Climate-smart soils. Nature 532, 49–57. https://doi.org/10.1038/nature17174 (2016).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 2.

    Knicker, H. Soil organic N-An under-rated player for C sequestration in soils?. Soil Biol. Biochem. 43, 1118–1129 (2011).

    CAS  Article  Google Scholar 

  • 3.

    Schmidt, M. W. I. et al. Persistence of soil organic matter as an ecosystem property. Nature 478, 49–56 (2011).

    ADS  CAS  Article  Google Scholar 

  • 4.

    Lehmann, J. & Kleber, M. The contentious nature of soil organic matter. Nature 528, 60–68. https://doi.org/10.1038/nature16069 (2015).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 5.

    Cotrufo, M. F. et al. Formation of soil organic matter via biochemical and physical pathways of litter mass loss. Nat. Geosci. 8, 776. https://doi.org/10.1038/ngeo2520 (2015).

    ADS  CAS  Article  Google Scholar 

  • 6.

    Liang, C., Schimel, J. P. & Jastrow, J. D. The importance of anabolism in microbial control over soil carbon storage. Nat. Microb. https://doi.org/10.1038/nmicrobiol.2017.105 (2017).

    Article  Google Scholar 

  • 7.

    Czaban, W., Rasmussen, J., Nicolaisen, M. & Fomsgaard, I. S. Dissipation kinetics of asparagine in soil measured by compound-specific analysis with metabolite tracking. Biol. Fertil. Soils 52, 911–916. https://doi.org/10.1007/s00374-016-1132-6 (2016).

    CAS  Article  Google Scholar 

  • 8.

    Farrell, M. et al. Rapid peptide metabolism: a major component of soil nitrogen cycling?. Global Biogeochem. Cycles 25, 107760 (2011).

    Article  Google Scholar 

  • 9.

    Apostel, C., Dippold, M. A., Bore, E. & Kuzyakov, Y. Sorption of Alanine changes microbial metabolism in addition to availability. Geoderma 292, 128–134. https://doi.org/10.1016/j.geoderma2017.01.016 (2017).

    ADS  CAS  Article  Google Scholar 

  • 10.

    Khan, K. S., Mack, R., Castillo, X., Kaiser, M. & Joergensen, R. G. Microbial biomass, fungal and bacterial residues, and their relationships to the soil organic matter C/N/P/S ratios. Geoderma 271, 115–123. https://doi.org/10.1016/j.geoderma.2016.02.019 (2016).

    ADS  CAS  Article  Google Scholar 

  • 11

    Miltner, A., Bombach, P., Schmidt-Brücken, B. & Kästner, M. SOM genesis: microbial biomass as a significant source. Biogeochemistry 111, 1–15 (2012).

    Article  Google Scholar 

  • 12.

    Lavallee, J. M., Soong, J. L. & Cotrufo, M. F. Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century. Glob. Change Biol. 26, 261–273. https://doi.org/10.1111/gcb.14859 (2020).

    ADS  Article  Google Scholar 

  • 13

    Cotrufo, M. F., Ranalli, M. G., Haddix, M. L., Six, J. & Lugato, E. Soil carbon storage informed by particulate and mineral-associated organic matter. Nat. Geosci. 12, 989. https://doi.org/10.1038/s41561-019-0484-6 (2019).

    ADS  CAS  Article  Google Scholar 

  • 14.

    Nannipieri, P. & Eldor, P. The chemical and functional characterization of soil N and its biotic components. Soil Biol. Biochem. 41, 2357–2369 (2009).

    CAS  Article  Google Scholar 

  • 15.

    Schimel, J. P. & Bennett, J. Nitrogen mineralization: challenges of a changing paradigm. Ecology 85, 591–602 (2004).

    Article  Google Scholar 

  • 16.

    Jan, M. T., Roberts, P., Tonheim, S. K. & Jones, D. L. Protein breakdown represents a major bottleneck in nitrogen cycling in grassland soils. Soil Biol. Biochem. 41, 2272–2282. https://doi.org/10.1016/j.soilbio.2009.08.013 (2009).

    CAS  Article  Google Scholar 

  • 17.

    Jones, D. L. & Kielland, K. Amino acid, peptide and protein mineralization dynamics in a taiga forest soil. Soil Biol. Biochem. 55, 60–69 (2012).

    CAS  Article  Google Scholar 

  • 18.

    Mariano, E., Jones, D. L., Hill, P. W. & Trivelin, P. C. O. Mineralisation and sorption of dissolved organic nitrogen compounds in litter and soil from sugarcane fields. Soil Biol. Biochem. 103, 522–532. https://doi.org/10.1016/j.soilbio.2016.10.004 (2016).

    CAS  Article  Google Scholar 

  • 19.

    Enggrob, K. L., Larsen, T., Larsen, M., Elsgaard, L. & Rasmussen, J. The influence of hydrolysis and derivatization on the determination of amino acid content and isotopic ratios in dual labeled (13C, 15N) white clover. Rapid Commun Mass Spectrom https://doi.org/10.1002/rcm.8300 (2018).

    Article  Google Scholar 

  • 20.

    Rubaek, G. H. In Long-term field experiments—a unique research platform (eds Christensen, B. T. et al.) (Aarhus University, Denmark, 2008).

    Google Scholar 

  • 21.

    Christensen, B. T., Petersen, J. & Trentemoller, U. M. The Askov long-term experiments on animal manure and mineral fertilizers: The Lermarken site 1894–2004. Report No. 121 (2006).

  • 22.

    Dumont, M. G. & Murrell, J. C. Stable isotope probing—linking microbial identity to function. Nat. Rev. Microbiol. 3, 499–504. https://doi.org/10.1038/nrmicro1162 (2005).

    CAS  Article  PubMed  Google Scholar 

  • 23.

    Jones, D. L. & Hodge, A. Biodegradation kinetics and sorption reactions of three differently charged amino acids in soil and their effects on plant organic nitrogen availability. Soil Biol. Biochem. 31, 1331–1342 (1999).

    CAS  Article  Google Scholar 

  • 24.

    Gonod, L. V., Jones, D. L. & Chenu, C. Sorption regulates the fate of the amino acids lysine and leucine in soil aggregates. Eur. J. Soil Sci. 57, 320–329 (2006).

    CAS  Article  Google Scholar 

  • 25.

    Kogel-Knabner, I. & Rumpel, C. In Advances in Agronomy, vol 149 (ed. Sparks, D. L.) 1–48 (Elsevier, Amsterdam, 2018).

    Google Scholar 

  • 26.

    Kirchman, D. L., Newell, S. Y. & Hodson, R. E. Incorporation versus biosynthesis of leucine – implications for measuring rates of protein-synthesis and biomass production by bacteria in marine systems. Mar. Ecol. Prog. Ser. 32, 47–59. https://doi.org/10.3354/meps032047 (1986).

    ADS  CAS  Article  Google Scholar 

  • 27.

    Dippold, M. A. & Kuzyakov, Y. Biogeochemical transformations of amino acids in soil assessed by position-specific labelling. Plant Soil 373, 385–401. https://doi.org/10.1007/s11104-013-1764-3 (2013).

    CAS  Article  Google Scholar 

  • 28.

    Simelyte, E., Rimpilainen, M., Zhang, X. & Toivanen, P. Role of peptidoglycan subtypes in the pathogenesis of bacterial cell wall arthritis. Ann. Rheum. Dis. 62, 976–982. https://doi.org/10.1136/ard.62.10.976 (2003).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 29.

    Schneewind, O. & Missiakas, D. M. Protein secretion and surface display in Gram-positive bacteria. Philos. Trans. R. Soc. B Biol. Sci. 367, 1123–1139. https://doi.org/10.1098/rstb.2011.0210 (2012).

    CAS  Article  Google Scholar 

  • 30.

    Vollmer, W., Blanot, D. & de Pedro, M. A. Peptidoglycan structure and architecture. FEMS Microbiol. Rev. 32, 149–167. https://doi.org/10.1111/j.1574-6976.2007.00094.x (2008).

    CAS  Article  PubMed  Google Scholar 

  • 31.

    Tamez-Hidalgo, P., Christensen, B. T., Lever, M. A., Elsgaard, L. & Lomstein, B. A. Endospores, prokaryotes, and microbial indicators in arable soils from three long-term experiments. Biol. Fertil. Soils 52, 101–112. https://doi.org/10.1007/s00374-015-1057-5 (2016).

    CAS  Article  Google Scholar 

  • 32.

    Hemkemeyer, M., Christensen, B. T., Martens, R. & Tebbe, C. C. Soil particle size fractions harbour distinct microbial communities and differ in potential for microbial mineralisation of organic pollutants. Soil Biol. Biochem. 90, 255–265. https://doi.org/10.1016/j.soilbio.2015.08.018 (2015).

    CAS  Article  Google Scholar 

  • 33.

    Suarez-Tapia, A., Thomsen, I. K., Rasmussen, J. & Christensen, B. T. Residual N effect of long-term applications of cattle slurry using winter wheat as test crop. Field Crops Res. 221, 257–264. https://doi.org/10.1016/j.fcr.2017.10.013 (2018).

    Article  Google Scholar 

  • 34.

    Castellano, M. J., Mueller, K. E., Olk, D. C., Sawyer, J. E. & Six, J. Integrating plant litter quality, soil organic matter stabilization, and the carbon saturation concept. Glob. Change Biol. 21, 3200–3209. https://doi.org/10.1111/gcb.12982 (2015).

    ADS  Article  Google Scholar 

  • 35.

    Jensen, J. L., Schjonning, P., Christensen, B. T. & Munkholm, L. J. Suboptimal fertilisation compromises soil physical properties of a hard-setting sandy loam. Soil Res. 55, 332–340. https://doi.org/10.1071/sr16218 (2017).

    Article  Google Scholar 

  • 36.

    Madigan, M. T., Bender, K. S., Buckley, D. H., Sattley, W. M. & Stahl, D. A. Brock Biology of Microorganisms 15th edn. (Pearson Education Limited, London, 2018).

    Google Scholar 

  • 37.

    Rousk, J. et al. Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J. 4, 1340–1351 (2010).

    Article  Google Scholar 

  • 38.

    Burns, R. G. In Soil Enzymes (ed. Burns, R. G.) (Academic Press, Cambridge, 1978).

    Google Scholar 

  • 39.

    Detmers, F. J. M., Kunji, E. R. S., Lanfermeijer, F. C., Poolman, B. & Konings, W. N. Kinetics and specificity of peptide uptake by the oligopeptide transport system of Lactococcus lactis. Biochemistry 37, 16671–16679. https://doi.org/10.1021/bi981712t (1998).

    CAS  Article  PubMed  Google Scholar 

  • 40.

    Scherrer, R., Beaman, T. C. & Gerhardt, P. Macromolecular sieving by dormant spore of bacillus-cereus. J. Bacteriol. 108, 868–870 (1971).

    CAS  Article  Google Scholar 

  • 41.

    Nannipieri, P., Trasar-Cepeda, C. & Dick, R. P. Soil enzyme activity: a brief history and biochemistry as a basis for appropriate interpretations and meta-analysis. Biol. Fertil. Soils 54, 11–19. https://doi.org/10.1007/s00374-017-1245-6 (2018).

    CAS  Article  Google Scholar 

  • 42.

    Simpson, J., Warren, C. & Adams, P. Potential protease activity and organic nitrogen concentration are rapid tests and accurate indicators of N-availability in Tasmanian Eucalyptus nitens plantations. Soil Biol. Biochem. 115, 152–160. https://doi.org/10.1016/j.soilbio.2017.08.015 (2017).

    CAS  Article  Google Scholar 

  • 43.

    Lipson, D. & Nasholm, T. The unexpected versatility of plants: organic nitrogen use and availability in terrestrial ecosystems. Oecologia 128, 305–316 (2001).

    ADS  Article  Google Scholar 

  • 44.

    Mortensen, R. M. In Oversigt over Landsforsøgene 2016 (ed. Pedersen, J. B.) 255–257 (Aarhus, SEGES, 2016).

    Google Scholar 

  • 45.

    Rasmussen, J., Gjettermann, B., Eriksen, J., Jensen, E. S. & Hogh-Jensen, H. Fate of N-15 and C-14 from labelled plant material: Recovery in perennial ryegrass-clover mixtures and in pore water of the sward. Soil Biol. Biochem. 40, 3031–3039 (2008).

    CAS  Article  Google Scholar 

  • 46.

    Colas, D., Doumeng, C., Pontalier, P. Y. & Rigal, L. Green crop fractionation by twin-screw extrusion: Influence of the screw profile on alfalfa (Medicago sativa) dehydration and protein extraction. Chem. Eng. Process. 72, 1–9. https://doi.org/10.1016/j.cep.2013.05.017 (2013).

    CAS  Article  Google Scholar 

  • 47.

    Petersen, S. O. & Klug, M. J. Effects of sieving, storage, and incubation-temperature on the phospholipid fatty-acid profile of a soil microbial community. Appl. Environ. Microbiol. 60, 2421–2430 (1994).

    CAS  Article  Google Scholar 

  • 48.

    Petersen, S. O., Frohne, P. S. & Kennedy, A. C. Dynamics of a soil microbial community under spring wheat. Soil Sci. Soc. Am. J. 66, 826–833 (2002).

    ADS  CAS  Article  Google Scholar 

  • 49.

    Fierer, N., Schimel, J. P. & Holden, P. A. Variations in microbial community composition through two soil depth profiles. Soil Biol. Biochem. 35, 167–176. https://doi.org/10.1016/s0038-0717(02)00251-1 (2003).

    CAS  Article  Google Scholar 

  • 50.

    Stromberger, M. E., Keith, A. M. & Schmidt, O. Distinct microbial and faunal communities and translocated carbon in Lumbricus terrestris drilospheres. Soil Biol. Biochem. 46, 155–162. https://doi.org/10.1016/j.soilbio.2011.11.024 (2012).

    CAS  Article  Google Scholar 

  • 51.

    Frostegard, A., Baath, E. & Tunlid, A. Shifts in the structure of soil microbial communities in limed forests as revealed by phospholipid fatty-acid analysis. Soil Biol. Biochem. 25, 723–730. https://doi.org/10.1016/0038-0717(93)90113-p (1993).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    Genetic structure in Orkney island mice: isolation promotes morphological diversification

    Leaf versus whole-canopy remote sensing methodologies for crop monitoring under conservation agriculture: a case of study with maize in Zimbabwe