in

Green leaves and seeds alcoholic extract controls Sporobulus indicus germination in laboratory conditions

  • 1.

    Powell, G., Tosh, C. R. & Hardie, J. Host plant selection by aphids: behavioral, evolutionary, and applied perspectives. Annu. Rev. Entomol. 51, 309–330, https://doi.org/10.1146/annurev.ento.51.110104.151107 (2006).

  • 2.

    Rana, N., Wilder, B., Sellers, B., Ferrell, J. & MacDonald, G. Effects of environmental factors on seed germination and emergence of smutgrass (Sporobolus indicus) varieties. Weed Sci. 60, 558–563, https://doi.org/10.1614/WS-D-11-00208.1 (2012).

  • 3.

    Currey, W.L.R., Parradoand, D. W J. Seed characteristics of smutgrass. Pages 53–54 in Proceedings of the 32nd Soil Crop Science Society of Florida. Gainesville, FL: Soil and Crop Science Society of Florida, (1973).

  • 4.

    Guido, A. C. & Pillar, D. H. V. D. Exploring seed to seed effects for understanding invasive species success. Perspect. Ecol. Conser. 15, 234–238, https://doi.org/10.1016/j.pecon.2017.07.006 (2017).

    • Article
    • Google Scholar
  • 5.

    Ferrell, J. A., Mullahey, J. J., Dusky, J. A. & Roka, F. M. Competition of giant smutgrass (Sporobolus indicus) in a bahiagrass pasture. WSSA. 54, 100–105, https://doi.org/10.1614/WS-05-061R1.1 (2006).

  • 6.

    McCaleband, J. E. E. & Hodges, M. Smutgrass control at Range Cattle Station, Ona, Florida. Pages 182–186 in Proceedings of the 24th Southern Weed Science Society. Southern Weed Science Society (1971).

  • 7.

    Quattrocchi, U. CRC world dictionary of grasses: common names, scientific names, eponyms, synonyms, and etymology. 2383p (Boca Raton: CRC Press, 2006)..

  • 8.

    Rana, N. et al. Impact of soil pH on bahiagrass competition with giant smutgrass (Sporobolus indicus var. pyramidalis) and small smutgrass (Sporobolus indicus var. indicus). WSSA. 61, 109–116, https://doi.org/10.1614/WS-D-12-00070.1 (2013).

  • 9.

    Jabran, K., Mahajan, G., Sardana, V. & Chauhan, B. S. Allelopathy for weed control in agricultural systems. J. Crop. Prot. 72, 56–75, https://doi.org/10.1016/j.cropro.2015.03.004 (2015).

    • Article
    • Google Scholar
  • 10.

    Musa, D. D., Esson, A. E., Shuaibu, B. U. & Adebola, M. I. Allelopathic effect of Senna obtusifolia on the germination and growth of cowpea and maize. Afr. J. Plant. Soil. Res. 5, 71–74 (2016).

    • Google Scholar
  • 11.

    Hidangmayum, A. & Sharma, R. Effect of different concentration of commercial seaweed liquid extract of Ascophylum nodosum on germination of onion (Allium cepa L.). J. Pharmacogn. Phytochem. 6, 1488–1481 (2017).

    • Google Scholar
  • 12.

    Zheng, Y. L. et al. Integrating novel chemical weapons and evolutionarily increased competitive ability in success of a tropical invader. N. Phytol. 205, 1350–1359, https://doi.org/10.1111/nph.13135 (2015).

    • Article
    • Google Scholar
  • 13.

    Cheng, F. & Cheng, Z. Research progress on the use of plant allelopathy in agriculture and the physiological and ecological mechanisms of allelopathy. Front. Plant. Sci. 6, e01020, https://doi.org/10.3389/fpls.2015.01020 (2015).

    • Article
    • Google Scholar
  • 14.

    Li, Z. H., Wang, Q., Ruan, X., Pan, C. D. & Jiang, D. A. Phenolics and plant allelopathy. Molecules 15, 8933–8952, https://doi.org/10.3390/molecules15128933 (2010).

  • 15.

    Singh, R. K. & Geetanjali, G. Phytochemical and pharmacological investigations of Ricinus communis Linn. Alg. J. Nat. Prod. 3, 120–129 (2015).

    • Google Scholar
  • 16.

    Li, Y. C., Guo, Q. S., Shen, H. J., Fang, H. L. & Redai, Y. Z. X. Preliminary isolation and identification of allelopathic compounds from Jatropha curcas L. fruit shells. J. Trop. Subtrop. Bot. 21, 73–77 (2013).

    • Google Scholar
  • 17.

    Singh, R. Geetanjali. Phytochemical and Pharmacological Investigations of Ricinus communis Linn. Alg. J. Nat. Prod. 3, 120–129 (2015).

    • Google Scholar
  • 18.

    Marwat, S. K. et al. Ricinus communis: Ethnomedicinal uses and pharmacological activities. Pak. J. Pharm. Sci. 30, 1815–1827 (2017).

  • 19.

    Hrazdina, G., Borzel, A. J. & Robinson, W. B. Studies on the stability of the anthocyanidin-3,5- diglucosides. Am. J. Enol. Viticult. 21, 201–204 (1970).

    • Google Scholar
  • 20.

    Figueiredo, A. C., Barroso, J. G., Pedro, L. G. & Scheffer, J. J. C. Factors affecting secondary metabolite production in plants, volatile components and essential oils. Flavour. Frag. J. 23, 213–226, https://doi.org/10.1002/ffj.1875 (2008).

  • 21.

    Djeridane, A. et al. Antioxidant activity of some Algerian medicinal plants extracts containing phenolic compounds. Food Chem. 97, 654–660, https://doi.org/10.1016/j.foodchem.2005.04.028 (2006).

  • 22.

    Wojdyło, A., Oszmiański, J. & Czemerys, R. Antioxidant activity and phenolic compounds in 32 selected herbs. Food Chem. 105, 940–949, https://doi.org/10.1016/j.foodchem.2007.04.038 (2007).

  • 23.

    Petretto, G. L. et al. Variability of chemical composition and antioxidant activity of essential oils between Myrtus communis var. Leucocarpa DC and var. Melanocarpa DC. Food Chem. istry 197, 124–131, https://doi.org/10.1016/j.foodchem.2015.10.056 (2016).

  • 24.

    Sulimaa, P., Krauze-Baranowska, M. & Przyborowskia, J. A. Variations in the chemical composition and content of salicylic glycosides in the bark of Salix purpurea from natural locations and their significance for breeding. Fitoterapia 118, 118–125, https://doi.org/10.1016/j.fitote.2017.03.005 (2017).

  • 25.

    Eloff, J. N. Which extractant should be used for the screening and isolation of antimicrobial components from plants? J. Ethnopharmacol. 60, 1–8, https://doi.org/10.1016/S0378-8741(97)00123-2 (1998).

  • 26.

    Teixeira, B. et al. Chemical composition and bioactivity of different oregano (Origanum vulgare) extracts and essential oil. J. Sci. Food Agric. 30, 2707–2714, https://doi.org/10.1002/jsfa.6089 (2013).

  • 27.

    Manoj, G. S. & Murugan, K. Phenolic profiles, antimicrobial and antioxidant potentiality of methanolic extract of a liverwort, Plagiochila beddomei Steph. Indian. J. Nat. Prod. Resour. 3, 173–183 (2012).

    • CAS
    • Google Scholar
  • 28.

    Sunil, A. G. et al. Total oligomeric flavonoids of Cyperus rotundus ameliorates neurological deficits, excitotoxicity and behavioral alterations induced by cerebral ischemic-reperfusion injury in rats. Brain Res. Bull. 84, 394–405 (2014).

    • Article
    • Google Scholar
  • 29.

    Kumar, K. H., Razack, S., Ilaiyaraja, N. & Khanum, F. Phytochemical analysis and biological properties of Cyperus rotundus L. Ind. Crop. Prod. 52, 815–826, https://doi.org/10.1016/j.indcrop.2013.11.040 (2014).

  • 30.

    Kumar, K. H., Tamatam, A., Pal, A. & Khanum, F. Neuroprotective effects of Cyperus rotundus on SIN-1 induced nitric oxide generation and protein nitration: ameliorative effect against apoptosis mediated neuronal cell damage. Neurotoxicology 34, 150–159, https://doi.org/10.1016/j.neuro.2012.11.002 (2013).

  • 31.

    Kandikattua, H. K. et al. LC–ESI-MS/MS analysis of total oligomeric flavonoid fraction of Cyperus rotundus and its antioxidant, macromolecule damage protective and antihemolytic effects. Pathophysiology 22, 165–173, https://doi.org/10.1016/j.pathophys.2015.07.001 (2015).

  • 32.

    Xie, Y. et al. Seasonal dynamics of total flavonoid contents and antioxidant activity of Dryopteris erythrosora. Food Chem. 186, 113–118, https://doi.org/10.1016/j.foodchem.2014.05.024 (2015).

  • 33.

    Silva, T. C. L. et al. Estudo da toxicidade subcrônica de Phyllanthus tenellus Roxb: avaliação comportamental. Rev. Enferm. 1, 17–22, https://doi.org/10.5205/0201200803 (2008).

    • Article
    • Google Scholar
  • 34.

    Williams, R. J., Spencer, J. P. E. & Rice, C. E. Flavonoids: Antioxidants or signaling molecules? Free. Radic. Biol. Med. 36, 838–849, https://doi.org/10.1016/j.freeradbiomed.2004.01.001 (2004).

  • 35.

    Komuraiah, A. et al. Antibacterial studies and phytochemical constituents of South Indian Phyllanthus species. Afr. J. Biotechnol. 8, 4991–4995 (2009).

    • Google Scholar
  • 36.

    Imani, A., et al. Seed Sci Technol. 39, 204-207 (2011).

  • 37.

    Tommasi, F., Paciolla, C., Pinto, M. C. & Gara, L. A. Comparative study of glutathione and ascorbate metabolism during germination of Pinus pinea L. seeds. J. Exp. Bot. 52, 1647–1654 (2001).

  • 38.

    Rivera-Pastrana, D. M., Yahia, E. M. & González-Aguilar, G. A. Phenolic and carotenoid profiles of papaya fruit (Carica papaya L.) and their contents under low temperature storage. J. Sci. Food Agric. 90, 2358–2365, https://doi.org/10.1002/jsfa.4092 (2010).

  • 39.

    Yang, S. et al. Chemical constituents of Cinnamomum septentrionale leaf litter and its allelopathic activity on the growth of maize (Zea mays). Nat. Prod. Res. 31, 1314–1317, https://doi.org/10.1080/14786419.2016.1236102 (2017).

  • 40.

    Šežiene, V., Baležentienė, L. & Maruška, A. Identification and allelochemical activity of phenolic compounds in extracts from the dominant plant species established in clear-cuts of Scots pine stands. iForest. 10, e1–e6, https://doi.org/10.3832/ifor1791-009 (2017).

    • Article
    • Google Scholar
  • 41.

    Li, H. H., Inoue, M., Nishimura, H., Mizutani, J. & Tsuzuki, E. Interaction of trans-cinnamic acid, its related phenolic allelochemicals, and abscisic-acid in seedling growth and seed-germination of lettuce. J. Chem. Ecol. 19, 1775–1787, https://doi.org/10.1007/BF00982307 (1993).

  • 42.

    Cruz, O. R., Anaya, A. L. & Hernandez-Bautista, B. E. Effects of allelochemical stress produced by sicyosdeppei on seedling root ultrastructure of Phaseolous valgaris and Cucubita ficifolia. J. Chem. Ecol. 24, 2039–2057 (1998).

    • Article
    • Google Scholar
  • 43.

    Sartor, L. R., Chini, P. F. A. N., Martin, T. N., Marchese, J. A. & Soares, A. B. Alelopatia de acículas de Pinus taeda na germinação e no desenvolvimento de plântulas de Avena strigosa. Ciênc. Rural. 39, 1653–1659, https://doi.org/10.1590/S0103-84782009000600004 (2009).

    • Article
    • Google Scholar
  • 44.

    Parr, A.J. & Bolwell, G.P. Phenols in the plant and in man. The potential for possible nutritional enhancement of the diet by modifying the phenols content or profile. J. Agric Food Chem. 80, 985–1012. 10.1002/(SICI)1097-0010(20000515)80:7<985::AID-JSFA572>3.0.CO;2-7 (2000).

  • 45.

    Weidner, S. et al. Analysis of phenolic compounds and antioxidant abilities of extracts from germinating Vitis californica seeds submitted to cold stress conditions and recovery after the stress. Int. J. Mol. Sci. 15, 16211–16225, https://doi.org/10.3390/ijms150916211 (2014).

  • 46.

    Dridi, A., Hadef, Y. & Bouloudani, L. Determination of total phenol, flavonoid, antioxidant and antimicrobial activity of methanolic extract of Teucrium polium L. in Algerian East. J. Pharmacogn. Phytochem. Res. 8, 1566–1570 (2016).

    • Google Scholar
  • 47.

    Hinderer, W., Petersen, M. & Seitz, H. U. Inhibition of flavonoid biosynthesis by gibberellic acid in cell suspension cultures of Daucus carota L. Planta 160, 544–549, https://doi.org/10.1007/BF00411143 (1984).

  • 48.

    Grande, M., Piera, F., Cuenca, A., Torres, P. & Bellido, I. Flavonoids from Inula viscosa. Planta Medica 51, 414–419, https://doi.org/10.1055/s-2007-969536 (1985).

  • 49.

    Macdonald, I. O., Oludare, A. S. & Olabiyi, A. Phytotoxic and anti-microbial activities of flavonoids in Ocimum gratissimum. Life Sci. 7, 45–48 (2010).

    • Google Scholar
  • 50.

    Reyes, M. N., Perez, A. & Cuevas, J. Detecting endogenous growth regulators on the sarcotesta, sclerotesta, endosperm and embryo by paper chromatography on fresh and old seeds of two papaya varieties. J. Agr. U Puerto Rico 64, 164–172 (1980).

    • Google Scholar
  • 51.

    Karakaya, S. Bioavailability of phenolic compounds. Crit. Rev. Food Sci. Nutr. 44, 453–464 (2004).

  • 52.

    Kellmann-Sopyła, W., Lahuta, L. B., Giełwanowska, I. & Górecki, R. J. Soluble carbohydrates in developing and mature diaspores of polar Caryophyllaceae and Poaceae. Acta Physiol. Plant. 37, e118, https://doi.org/10.1007/s11738-015-1866-z (2015).

  • 53.

    Souza, A., Sandrin, C. Z., Moraes, M. G. & Ribeiro, R. C. L. F. Diurnal variations of non-structural carbohydrates in vegetative tissues of Melinis minutiflora, Echinolaena inflexa and Lolium multiflorum (Poaceae). Braz. J. Bot. 28, 755–763, https://doi.org/10.1590/S0100-84042005000400010 (2005).

    • Article
    • Google Scholar
  • 54.

    Deeks, E. D. et al. The low lysine content of ricin A chain reduces the risk of proteolytic degradation after translocation from the endoplasmic reticulum to the cytosol. Biochem. 41, 3405–3413 (2001).

    • Article
    • Google Scholar
  • 55.

    Lord, M. J. et al. Ricin. Mechanism of cytotoxicity. Toxicol. Rev. 22, 53–64 (2003).

  • 56.

    Barbieri, L. et al. Enzymatic activity of toxic and non-toxic type 2 ribosome-inactivating proteins. FEBS Lett. 563, e00286–8, https://doi.org/10.1016/S0014-5793(04)00286-8 (2004).

  • 57.

    Jasheway, K., Pruet, J., Anslyn, E. V. & Robertus, J. D. Structure-based design of ricin inhibitors. Toxins 3, 1233–1248, https://doi.org/10.3390/toxins3101233 (2011).

  • 58.

    Etzler, M. E. et al. A Nod factor binding lectin with apyrase activity from legume roots. Proc. Natl. Acad. Sci. USA 96, 5856–5861 (1999).

  • 59.

    Kalsi, G. & Etzler, M. E. Localization of a Nod factor-binding protein in legume roots and factors influencing its distribution and expression. Plant. Physiol. 124, 1039–1048, https://doi.org/10.1104/pp.124.3.1039 (2000).

  • 60.

    Rüdiger, H. & Gabius, H. J. Plant lectins: occurrence, biochemistry, functions and applications. Glycoconj. J. 18, 589–613 (2001).

    • Article
    • Google Scholar
  • 61.

    Bhadoria, P. B. S. Allelopathy: a natural way towards weed management. Am. J. Agric. Exp. 1, 7–20 (2011).

    • Google Scholar
  • 62.

    Brasil. Ministério da Agricultura, Pecuária e Abastecimento. Regras para análise de sementes. 399p (Brasília: Mapa/ACS, 2009).

  • 63.

    Betts. J. & Officer, D. Control of giant parramatta grass: Agnote DPI/354, Orange: NSW Agriculture, 11 p. (2001).

  • 64.

    Fu, M., Feng, H. J., Chen, Y., Wang, D. B. & Yang., G. Z. Antioxidant activity of Garcinia xanthochymus leaf, root and fruit extracts in vitro. Chin. J. Nat. Medicines. 10, 129–134 (2012).

  • 65.

    Francis, F. J. Analysis of anthocyanins. In: Markakis, P. Anthocyanins as food colors. (p.181–206). London: Academic Press (1982).

  • 66.

    Higby, W. K. A simplified method for determination of some the carotenoid distribution in natural and carotene fortified orange juice. J. Food Sci. 27, 42–49, https://doi.org/10.1111/j.1365-2621.1962.tb00055.x (1962).

  • 67.

    Dixon, R. A. & Paiva, N. L. Stress-induced phenylpropanoid metabolism. Plant. Cell 7, 1085–1097, https://doi.org/10.1105/tpc.7.7.1085 (1995).


  • Source: Ecology - nature.com

    What is the future of lighting waste?

    MIT helps first-time entrepreneur build food hospitality company