in

Gregariousness in the giant sloth Lestodon (Xenarthra): multi-proxy approach of a bonebed from the Last Maximum Glacial of Argentine Pampas

  • 1.

    Fariña, R. A., Vizcaíno, S. F. & De Iuliis, G. Megafauna: Giant Beasts of Pleistocene South America 416 (Indiana University Press, Bloomington, 2013).

    Google Scholar 

  • 2.

    Fariña, R. A. et al. Arroyo del Vizcaíno, Uruguay: a fossil-rich 30-ka-old megafaunal locality with cut-marked bones. Proc. R. Soc. Lon. B 281, 20132211. https://doi.org/10.1098/rspb.2013.2211 (2013).

    Article  Google Scholar 

  • 3.

    Buckley, M. et al. Collagen sequence analysis of the extinct giant ground sloths Lestodon and Megatherium. PLoS ONE 10, e0139611. https://doi.org/10.1371/journal.pone.0139611 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 4.

    Cione, A. L., Gasparini, G. M., Soibelzon, E., Soibelzon, L. H. & Tonni, E. P. The Great American Biotic Interchange. A South American perspective 97 (Springer Briefs in Earth Sciences, New York, 2015).

    Google Scholar 

  • 5.

    Segura, A. M., Fariña, R. A. & Arim, M. Exceptional body sizes but typical trophic structure in a Pleistocene food web. Biol. Lett. 12, 20160228. https://doi.org/10.1098/rsbl.2016.0228 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • 6.

    Varela, L., Tambusso, P. S., McDonald, H. G. & Fariña, R. A. Phylogeny, macroevolutionary trends and historical biogeography of sloths: Insights from a Bayesian morphological clock analysis. Syst. Biol. 68, 204–218. https://doi.org/10.1093/sysbio/syy058 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • 7.

    Politis, G. G., Messineo, P. G., Stafford, T. W. Jr. & Lindsey, E. L. Campo Laborde: a Late Pleistocene giant ground sloth kill and butchering site in the Pampas. Sci. Adv. 5, 546. https://doi.org/10.1126/sciadv.aau4546 (2019).

    CAS  Article  Google Scholar 

  • 8.

    Delsuc, F. et al. Ancient mitogenomes reveal the evolutionary history and biogeography of sloths. Curr. Biol. 29, 1–12. https://doi.org/10.1016/j.cub.2019.05.043 (2019).

    CAS  Article  Google Scholar 

  • 9.

    Gaudin, T. J. Phylogenetic relationships among sloths (Mammalia, Xenarthra, Tardigrada): the craniodental evidence. Zool. J. Linn. Soc. 140, 255–305. https://doi.org/10.1111/j.1096-3642.2003.00100.x (2004).

    Article  Google Scholar 

  • 10.

    Slater, G. J. et al. Evolutionary relationships among extinct and extant sloths: The evidence of mitogenomes and retroviruses. Genome Biol. Evol. 8, 607–621. https://doi.org/10.1093/gbe/evw023 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 11.

    Bargo, M. S. & Vizcaíno, S. F. Paleobiology of Pleistocene ground sloths (Xenarthra, Tardigrada): biomechanics, morphogeometry and ecomorphology applied to the masticatory apparatus. Ameghiniana 45, 175–196 (2008).

    Google Scholar 

  • 12.

    Koch, P. L. & Barnosky, A. D. Late Quaternary extinctions: State of the debate. Annu. Rev. Ecol. Evol. Syst. 37, 215–250. https://doi.org/10.1146/annurev.ecolsys.34.011802.132415 (2006).

    Article  Google Scholar 

  • 13.

    Prado, J. L., Martínez-Maza, C. & Alberdi, M. T. Megafauna extinction in South America: A new chronology for the Argentine Pampas. Palaeogeogr Palaeocl Palaeoecol 425, 41–49. https://doi.org/10.1016/j.palaeo.2015.02.026 (2015).

    ADS  Article  Google Scholar 

  • 14.

    MacPhee, R. D. E. End of the megafauna The fate of the world´s hugest, fiercest and strangest animals 252 (Norton & Company, New York, W. W, 2018).

    Google Scholar 

  • 15.

    Mothé, D. et al. An artifact embedded in an extinct proboscidean sheds new light on human-megafaunal interactions in the Quaternary of South America. Quat. Sci. Rev. 229, 106125. https://doi.org/10.1016/j.quascirev.2019.106125 (2020).

    Article  Google Scholar 

  • 16.

    Presslee, S. et al. Palaeoproteomics resolves sloth relationships. Nat. Ecol. Evol. 3, 1121–1130. https://doi.org/10.1038/s41559-019-0909-z (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • 17.

    Gervais, P. Recherches sur les mammifères fossiles de l’amérique méridionale: Mémoire Accompagne de Dix Planches Lithographiees 78 (Forgotten Books, London, 1855).

    Google Scholar 

  • 18.

    Czerwonogora, A. & Fariña, R. A. How many Pleistocene species of Lestodon (Mammalia, Xenarthra, Tardigrada)?. J. Syst. Paleontol. 11, 251–263. https://doi.org/10.1080/14772019.2012.660993 (2012).

    Article  Google Scholar 

  • 19.

    Fariña, R. A., Vizcaíno, S. F. & Bargo, M. S. Body mass estimations in Lujanian (Late Pleistocene-Early Holocene of South America) mammal megafauna. Mastozool. Neotrop. 5, 87–108 (1998).

    Google Scholar 

  • 20.

    Bargo, M. S., Vizcaíno, S. F., Archuby, F. M. & Blanco, R. E. Limb bone proportions, strength and digging in some Lujanian (Late Pleistocene-Early Holocene) mylodontid ground sloths (Mammalia, Xenarthra). J. Verteb. Paleontol. 20, 601–610. https://doi.org/10.1671/0272-4634(2000)020[0601:LBPSAD]2.0.CO;2 (2000).

    Article  Google Scholar 

  • 21.

    Paula Couto, C. Tratado de Paleomastozoologia 590 (Academia Brasileira de Ciências, , Rio de Janerio, 1979).

    Google Scholar 

  • 22.

    Varela, L. & Fariña, R. A. Co-occurrence of mylodontid sloths and insights on their potential distributions during the late Pleistocene. Quat. Res. 85, 66–74. https://doi.org/10.1016/j.yqres.2015.11.009 (2016).

    Article  Google Scholar 

  • 23.

    Clark, P. U. The Last Glacial Maximum. Science 325, 710–714. https://doi.org/10.1126/science.1172873 (2009).

    ADS  CAS  Article  Google Scholar 

  • 24.

    Barnosky, A. D. & Lindsey, E. L. Timing of Quaternary megafaunal extinction in South America in relation to human arrival and climate change. Quat. Int. 217, 10–29. https://doi.org/10.1016/j.quaint.2009.11.017 (2010).

    Article  Google Scholar 

  • 25.

    Deschamps, C. M. & Tomassini, R. L. Late Cenozoic vertebrates from the southern Pampean Region: systematic and bio-chronostratigraphic update. Publicación Electrónica de la Asociación Paleontológica Argentina 16, 202–225. https://doi.org/10.5710/PEAPA.16.05.2016.113 (2016).

    Article  Google Scholar 

  • 26.

    Vega, V., Rodríguez, S. & Valente, M. Shallow marine and fluvial environments of Quaternary deposits in Pehuén Co beach, Buenos Aires, Argentina. Quat S.Am. Antarct. Penins. 7, 51–80 (1989).

    Google Scholar 

  • 27.

    Zavala, C. A. & Quattrocchio, M. E. Estratigrafía y evolución geológica del río Sauce Grande (Cuaternario), provincia de Buenos Aires. Rev. Asoc. Geol. Argentina 56, 25–37 (2001).

    Google Scholar 

  • 28.

    Ponce, J. F., Rabassa, J., Coronato, A. & Borromei, A. M. Palaeogeographical evolution of the Atlantic coast of Pampa and Patagonia from the last glacial maximum to the Middle Holocene. Biol. J. Linn. Soc. 103, 363–379. https://doi.org/10.1111/j.1095-8312.2011.01653.x (2011).

    Article  Google Scholar 

  • 29.

    Aramayo, S. A. Cronología radiocarbónica de localidades fosilíferas pleistocenas y holocenas de la costa sud-sudeste de la provincia de Buenos Aires, Argentina. 6° Congresso da Associação Brasileira de Estudos do Quaternário e Reunido sobre o Quaternário da América do Sul. Abstract volume 305–308 (1998).

  • 30.

    McDonald, H. G. Sexual dimorphism in the skull of Harlan’s ground sloth. Contrib. Sci. 510, 1–9 (2006).

    Google Scholar 

  • 31.

    Boscaini, A., Pujos, F. & Gaudin, T. J. A reappraisal of the phylogeny of Mylodontidae (Mammalia, Xenarthra) and the divergence of mylodontine and lestodontine sloths. Zool. Scr. 48, 691–710. https://doi.org/10.1093/zoolinnean/zlz011 (2019).

    Article  Google Scholar 

  • 32.

    Cartelle, C., De Iuliis, G., Boscaini, A. & Pujos, F. Anatomy, possible sexual dimorphism, and phylogenetic affinities of a new mylodontine sloth from the Late Pleistocene of intertropical Brazil. J. Syst. Paleontol. 17, 1957–1988. https://doi.org/10.1080/14772019.2019.1574406 (2019).

    Article  Google Scholar 

  • 33.

    Brambilla, L. & Ibarra, D. A. Archaeomylodon sampedrinensis, gen. et sp. Nov., a new mylodontine from the middle Pleistocene of Pampean Region Argentina. J. Vertebr. Paleontol. 38, e1542308. https://doi.org/10.1080/02724634.2018.1542308 (2019).

    Article  Google Scholar 

  • 34.

    Voorhies, M. Taphonomy and population dynamics of an Early Pliocene vertebrate fauna, Knox County, Nebraska. Contrib. Geol. 1, 1–69 (1969).

    Google Scholar 

  • 35.

    Behrensmeyer, A. K. The taphonomy and paleoecology of Plio-Pleistocene vertebrate assemblages of Lake Rudolf, Kenya. Bull. Mus. Comp. Zool. 146, 473–578 (1975).

    Google Scholar 

  • 36.

    Frison, G. C. & Todd, L. C. The Colby Mammoth Site: Taphonomy and Archaeology of a Clovis Kill in Northern Wyoming 238 (University of New Mexico Press, Mexico, 1986).

    Google Scholar 

  • 37.

    Bryant, J. D., Koch, P. L., Froelich, P. N., Showers, W. J. & Genna, B. J. Oxygen isotope partitioning between phosphate and carbonate in mammalian apatite. Geochim. Cosmochim. Acta 60, 5145–5148. https://doi.org/10.1016/S0016-7037(96)00308-0 (1996).

    ADS  CAS  Article  Google Scholar 

  • 38.

    Iacumin, P., Bocherens, H., Mariotti, A. & Longinelli, A. Oxygen isotope analyses of coexisting carbonate and phosphate in biogenic apatite: a way to monitor diagenetic alteration of bone phosphate?. Earth Planet. Sci. Lett. 142, 1–6. https://doi.org/10.1016/0012-821X(96)00093-3 (1996).

    ADS  CAS  Article  Google Scholar 

  • 39.

    Rogers, R. R. & Kidwell, S. M. A conceptual framework for the genesis and analysis of vertebrate skeletal concentrations. In Bonebeds Genesis, Analysis, and Paleobiological Significance (eds Rogers, R. R. et al.) 1–64 (The University of Chicago Press, Chicago, 2007).

    Google Scholar 

  • 40.

    Eberth, D. A., Shannon, M. & Noland, B. G. A bonebeds database: Classification, biases, and patterns of occurrence. In Bonebeds Genesis, Analysis, and Paleobiological Significance (eds Rogers, R. R. et al.) 103–220 (The University of Chicago Press, Chicago, 2007).

    Google Scholar 

  • 41.

    Prates, L., Politis, G. & Steele, J. Radiocarbon chronology of the early human occupation of Argentina. Quat. Int. 301, 104–122. https://doi.org/10.1016/j.quaint.2013.03.011 (2013).

    Article  Google Scholar 

  • 42.

    Berger, J. et al. Back-casting sociality in extinct species: new perspectives using mass death assemblages and sex ratios. Proc. R. Soc. Lond. B 268, 131–139. https://doi.org/10.1098/rspb.2000.1341 (2001).

    CAS  Article  Google Scholar 

  • 43.

    Ferigolo, J. Anatomia comparada Paleontologia e paleopatologia de vertebrados. Paula-Coutiana 1, 105–127 (1987).

    Google Scholar 

  • 44.

    Ferigolo, J. Non-human vertebrate paleopathologies of some Brazilian Pleistocene mammals. In Paleopatologia e Paleoepidemiologia: Estudos Multidisciplinares (eds de Araújo, A. J. G. & Ferreira, L. F.) 213–234 (Fundaçȃo Oswaldo Cruz, Escola Nacional de Saúde Pública, Lisboa, 1992).

    Google Scholar 

  • 45.

    Ferigolo, J. & Tomassini, R. L. Patologías en vértebras de Lestodon Gervais, 1855 (Xenarthra, Tardígrada, Mylodontidae) provenientes del yacimiento de Playa del Barco (Pleistoceno tardío), provincia de Buenos Aires, Argentina. Ameghiniana Suplemento Resúmenes 44, 17R (2007).

    Google Scholar 

  • 46.

    Fernando, H. D., Porpino, K. D., Bergqvist, L. P. & Rothschild, B. M. Elucidating bone diseases in Brazilian Pleistocene sloths (Xenarthra, Pilosa, Folivora): first cases reported for the Nothrotheriidae and Megalonychidae families. Ameghiniana 54, 331–340. https://doi.org/10.5710/AMGH.30.11.2016.3032 (2017).

    Article  Google Scholar 

  • 47.

    Barbosa, F. H., Porpino, K. D., Araújo-Júnior, H. I., Bergqvist, L. P. & Rothschild, B. M. Articular and vertebral lesions in the Pleistocene sloths (Xenarthra, Folivora) from the Brazilian Intertropical Region. Hist. Biol. 31, 544–558. https://doi.org/10.1080/08912963.2017.1376191 (2019).

    Article  Google Scholar 

  • 48.

    Enlow, D. H. & Brown, S. O. A comparative histological study of fossil and recent bone tissues. Part III. Texas J.Sci. 10, 187–230 (1958).

    Google Scholar 

  • 49.

    de Ricqles, A., Taquet, P. & de Buffrénil, V. Rediscovery of Paul Gervais’ paleohistological collection. Geodiversitas 31, 943–971. https://doi.org/10.5252/g2009n4a943 (2009).

    Article  Google Scholar 

  • 50.

    Straehl, F. R., Scheyer, T. M., Forasiepi, A. M., MacPhee, R. D. & Sánchez-Villagra, M. R. Evolutionary patterns of bone histology and bone compactness in xenarthran mammal long bones. PLoS ONE 8, e69275. https://doi.org/10.1371/journal.pone.0069275 (2013).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 51.

    Amson, E., de Muizon, C., Domning, D. P., Argot, C. & de Buffrénil, V. Bone histology as a clue for resolving the puzzle of a dugong rib in the Pisco Formation, Peru. J. Vertebr. Paleontol. 35, e922981. https://doi.org/10.1080/02724634.2014.922981 (2015).

    Article  Google Scholar 

  • 52.

    Kolb, C. et al. Mammalian bone palaeohistology: a survey and new data with emphasis on island forms. PeerJ 3, e1358. https://doi.org/10.7717/peerj.1358 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • 53.

    Castanet, J. et al. Lines of arrested growth in bone and age estimation in a small primate: Microcebus murinus. J. Zool. 263, 31–39. https://doi.org/10.1017/S0952836904004844 (2004).

    Article  Google Scholar 

  • 54.

    Köhler, M., Marín-Moratalla, N., Jordana, X. & Aanes, R. Seasonal bone growth and physiology in endotherms shed light on dinosaur physiology. Nature 487, 358–361. https://doi.org/10.1038/nature11264 (2012).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 55.

    Cerling, T. E. & Harris, J. M. Carbon isotope fractionation between diet and bioapatite in ungulate mammals and implications for ecological and paleoecological studies. Oecologia 120, 347–363. https://doi.org/10.1007/s004420050868 (1999).

    ADS  Article  PubMed  PubMed Central  Google Scholar 

  • 56.

    Tejada-Lara, J. V. et al. Body mass predicts isotope enrichment in herbivorous mammals. Proc. R. Soc. B 285, 20181020. https://doi.org/10.1098/rspb.2018.1020 (2018).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 57.

    Czerwonogora, A., Fariña, R. A. & Tonni, E. P. Diet and isotopes of Late Pleistocene ground sloths: first results for Lestodon and Glossotherium (Xenarthra, Tardigrada). N. J. Geol. Paläont. Abh. 262, 257–266. https://doi.org/10.1127/0077-7749/2011/0197 (2011).

    Article  Google Scholar 

  • 58.

    Bargo, M. S., Toledo, N. & Vizcaíno, S. F. Muzzle of South American ground sloths (Xenarthra, Tardigrada). J. Morphol. 267, 248–263. https://doi.org/10.1002/jmor.10399 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  • 59.

    Saarinen, J. & Karme, A. Tooth wear and diets of extant and fossil xenarthrans (Mammalia, Xenarthra)—applying a new mesowear approach. Palaeogeogr Palaeocl Palaeoecol 476, 42–54. https://doi.org/10.1016/j.palaeo.2017.03.027 (2017).

    ADS  Article  Google Scholar 

  • 60.

    Gutiérrez, M. A., Martínez, G. A., Bargo, M. S. & Vizcaíno, S. F. Supervivencia diferencial de mamíferos de gran tamaño en la región pampeana en el Holoceno temprano y su relación con aspectos paleobiológicos. In Zooarqueología a Principios del Siglo XXI: Aportes Teóricos, Metodológicos y Casos de Studio (eds Gutiérrez, M. et al.) 231–241 (Ediciones del Espinillo, Buenos Aires, 2010).

    Google Scholar 

  • 61.

    Toledo, N., Bargo, M. S., Vizcaíno, S. F., De Iuliis, G. & Pujos, F. Evolution of body size in anteaters and sloths (Xenarthra, Pilosa): phylogeny, metabolism, diet and substrate preferences. Earth. Environ. Sci. Trans. R. Soc. Edinburgh 106, 289–301. https://doi.org/10.1017/S1755691016000177 (2017).

    Article  Google Scholar 

  • 62.

    Alexander, R. W. The evolution of social behavior. Ann. Rev. Ecol. Syst. 5, 325–383 (1974).

    Article  Google Scholar 

  • 63.

    Brickman, D., Eberth, D. & Currie, P. From bonebeds to paleobiology: applications of bonebed data. In Bonebeds: Genesis, Analysis and Paleobiological Significance (eds Rogers, R. R. et al.) 221–263 (The University of Chicago Press, Chicago, 2007).

    Google Scholar 

  • 64.

    Cione, A. L., Tonni, E. P. & Soibelzon, L. Did Humans Cause the Late Pleistocene-Early Holocene Mammalian Extinctions in South America in a Context of Shrinking Open Areas? In American Megafaunal Extinctions at the End of the Pleistocene (ed. Haynes, G.) 125–144 (Springer Publishers, Berlin, 2009).

    Google Scholar 

  • 65.

    Cartelle, C. & Bohórquez, G. A. Eremotherium laurillardi Lund, 1842. Determinacȃo específica e dimorfismo sexual. Iheringia Séria Geologia 7, 45–63 (1982).

    Google Scholar 

  • 66.

    Lindsey, E. L. & Seymour, K. L. “Tar Pits” of the western Neotropics: Paleoecology, taphonomy, and mammalian biogeography. Nat. Hist. Mus. Los Angeles County Sci. Ser. 42, 111–123 (2015).

    Google Scholar 

  • 67.

    Buchmann, F. S., Frank, H. T., Sandim Ferreira, V. M. & Cruz, E. A. Evidência de vida gregária em paleotocas atribuídas a Mylodontidae (preguiças-gigantes). Rev. Bras. Paleontol. 19, 259–270. https://doi.org/10.4072/rbp.2016.2.09 (2016).

    Article  Google Scholar 

  • 68.

    Lindsey, E. L., Lopez Reyes, E. X., Matzke, G. E., Rice, K. A. & McDonald, H. G. A monodominant late-Pleistocene megafauna locality from Santa Elena, Ecuador: Insight on the biology and behavior of giant ground sloths. Palaeogeogr Palaeocl Palaeoecol 544, 109599. https://doi.org/10.1016/j.palaeo.2020.109599 (2020).

    ADS  Article  Google Scholar 

  • 69.

    Czerwonogora, A., Fariña, R. A. Un cementerio de Lestodon: tafonomía del yacimiento de El Caño, Colonia, Uruguay. Reunión anual de comunicaciones Asociación Paleontológica Argentina y Simposio de Tafonomía y Paleoecología, Abstract volume 29–30 (2003).

  • 70.

    Bocherens, H. et al. Isotopic insight on paleodiet of extinct Pleistocene megafaunal xenarthrans from Argentina. Gondwana Res 48, 7–14. https://doi.org/10.1016/j.gr.2017.04.003 (2017).

    ADS  CAS  Article  Google Scholar 

  • 71.

    Domingo, L., Tomassini, R. L., Montalvo, C. I., Sanz-Pérez, D. & Alberdi, M. T. The Great American Biotic Interchange revisited: a new perspective from the stable isotope record of Argentine Pampas fossil mammals. Sci. Rep. 10, 1068. https://doi.org/10.1038/s41598-020-58575-6 (2020).

    CAS  Article  Google Scholar 

  • 72.

    Bocherens, H. et al. Paleobiology of sabretooth cat Smilodon populator in the Pampean Region (Buenos Aires Province, Argentina) around the Last Glacial Maximum: Insights from carbon and nitrogen stable isotopes in bone collagen. Palaeogeogr Palaeocl Palaeoecol 449, 463–474. https://doi.org/10.1016/j.palaeo.2016.02.017 (2016).

    ADS  Article  Google Scholar 

  • 73.

    Badgley, C. Counting individuals in mammalian fossil assemblages from fluvial environments. Palaios 1, 328–338. https://doi.org/10.2307/3514695 (1986).

    ADS  Article  Google Scholar 

  • 74.

    Andrews, P. Owls, Caves, and Fossils: Predation Preservation and Accumulation of Small Mammal Bones in Caves, with the Analysis of the Pleistocene cave Faunas from Westbury-sub-mendip, Somerset, UK 231 (Natural History Museum Publications, London, 1990).

    Google Scholar 

  • 75.

    Behresmeyer, A. K. Terrestrial vertebrate accumulations. In Taphonomy: Releasing the Data Locked in the Fossil Record (eds Allison, P. A. & Briggs, D. E. G.) 291–335 (Plenum Press, New York, 1991).

    Google Scholar 

  • 76.

    Marshall, L. Bone modification and ‘The laws of burial.’ In Bone Modification (eds Bonnichsen, R. & Sorg, M.) 7–24 (Center for the Study of the First Americans, New York, 1989).

    Google Scholar 

  • 77.

    Behresmeyer, A. K. Taphonomic and ecologic information from bone weathering. Paleobiology 4, 150–162 (1978).

    Article  Google Scholar 

  • 78.

    Alcalá, L. Macromamíferos néogenos de la fosa de Alfambra-Teruel. Instituto de Estudios Turolenses y Museo Nacional de Ciencias Naturales, 554 (1994).

  • 79.

    Fernández-Jalvo, Y. & Andrews, P. Atlas of Taphonomic Identifications. 1001+ Images of Fossil and Recent Mammal Bone Modification 359 (Springer, Berlin, 2016).

    Google Scholar 

  • 80.

    Padian, K. & Lamm, E. T. Bone Histology of Fossil Tetrapods: Advancing Methods, Analysis, and Interpretation 298 (University of California Press, San Francisco, 2013).

    Google Scholar 

  • 81.

    Francillon-Vieillot, H. et al. Microstructure and mineralization of vertebrate skeletal tissues. In Skeletal Biomineralization: Patterns, Processes and Evolutionary Trends (ed. Carter, J. G.) 471–530 (Van Nostrand Reinhold, New York, 1990).

    Google Scholar 


  • Source: Ecology - nature.com

    D-Lab moves online, without compromising on impact

    Coronavirus disease 2019 (COVID-19) outbreak: some serious consequences with urban and rural water cycle