in

Gymnosperm glandular trichomes: expanded dimensions of the conifer terpenoid defense system

  • 1.

    Bowe, L. M., Coat, G. & DePamphilis, C. W. Phylogeny of seed plants based on all three genomic compartments: Extant gymnosperms are monophyletic and Gnetales’ closest relatives are conifers. Proc. Natl. Acad. Sci. USA 97, 4092–4097 (2000).

    ADS  Article  CAS  Google Scholar 

  • 2.

    Bohlmann, J. & Keeling, C. I. Terpenoid biomaterials. Plant J. 54, 656–669 (2008).

    Article  CAS  Google Scholar 

  • 3.

    Celedon, J. M. & Bohlmann, J. Oleoresin defenses in conifers: Chemical diversity, terpene synthases, and limitations of oleoresin defense under climate change. New Phytol. 224, 1444–1463 (2019).

    Article  CAS  Google Scholar 

  • 4.

    Whitehill, J. G. A. et al. Functions of stone cells and oleoresin terpenes in the conifer defense syndrome. New Phytol. 221, 1503–1517 (2019).

    Article  CAS  Google Scholar 

  • 5.

    Hilker, M., Kobs, C., Varama, M. & Schrank, K. Insect egg deposition induces Pinus sylvestris to attract egg parasitoids. J. Exp. Biol. 205, 455–461 (2002).

    PubMed  Google Scholar 

  • 6.

    Mumm, R., Schrank, K., Wegener, R., Schulz, S. & Hilker, M. Chemical analysis of volatiles emitted by Pinus sylvestris after induction by insect oviposition. J. Chem. Ecol. 29, 1235–1252 (2003).

    Article  CAS  Google Scholar 

  • 7.

    Martin, D. M., Gershenzon, J. & Bohlmann, J. Induction of volatile terpene biosynthesis and diurnal emission by methyl jasmonate in foliage of Norway spruce. Plant Physiol. 132, 1586–1599 (2003).

    Article  CAS  Google Scholar 

  • 8.

    Miller, B., Madilao, L. L., Ralph, S. & Bohlmann, J. Insect-induced conifer defense. White pine weevil and methyl jasmonate induce traumatic resinosis, de novo formed volatile emissions, and accumulation of terpenoid synthase and putative octadecanoid pathway transcripts in Sitka spruce. Plant Physiol. 137, 369–382 (2005).

  • 9.

    Niinemets, U., Reichstein, M., Staudt, M., Seufert, G. & Tenhunen, J. D. Stomatal constraints may affect emission of oxygenated monoterpenoids from the foliage of Pinus pinea. Plant Physiol. 130, 1371–1385 (2002).

    Article  CAS  Google Scholar 

  • 10.

    Harley, P., Eller, A., Guenther, A. & Monson, R. K. Observations and models of emissions of volatile terpenoid compounds from needles of ponderosa pine trees growing in situ: Control by light, temperature and stomatal conductance. Oecologia 176, 35–55 (2014).

    ADS  Article  Google Scholar 

  • 11.

    Tissier, A. Plant secretory structures: More than just reaction bags. Curr. Opin. Biotechnol. 49, 73–79 (2018).

    Article  CAS  Google Scholar 

  • 12.

    Schilmiller, A. L., Last, R. L. & Pichersky, E. Harnessing plant trichome biochemistry for the production of useful compounds. Plant J. 54, 702–711 (2008).

    Article  CAS  Google Scholar 

  • 13.

    Wagner, G. J., Wang, E. & Shepherd, R. W. New approaches for studying and exploiting an old protuberance, the plant trichome. Ann. Bot. 93, 3–11 (2004).

    Article  CAS  Google Scholar 

  • 14.

    Lange, B. M. The evolution of plant secretory structures and the emergence of terpenoid chemical diversity. Annu. Rev. Plant Biol. 66, 139–159 (2015).

    Article  CAS  Google Scholar 

  • 15.

    Lange, B. M. et al. Probing essential oil biosynthesis and secretion by functional evaluation of expressed sequence tags from mint glandular trichomes. Proc. Natl. Acad. Sci. USA 97, 2934–2939 (2000).

    ADS  Article  CAS  Google Scholar 

  • 16.

    Wang, G. et al. Terpene biosynthesis in glandular trichomes of Hop. Plant Physiol. 148, 1254–1266 (2008).

    ADS  Article  CAS  Google Scholar 

  • 17.

    Nagel, J. et al. EST analysis of hop glandular trichomes identifies an o-methyltransferase that catalyzes the biosynthesis of xanthohumol. Plant Cell 20, 186–200 (2008).

    Article  CAS  Google Scholar 

  • 18.

    Czechowski, T. et al. Artemisia annua mutant impaired in Artemisinin synthesis demonstrates importance of nonenzymatic conversion in terpenoid metabolism. Proc. Natl. Acad. Sci. USA. 113, 15150–15155 (2016).

    Article  CAS  Google Scholar 

  • 19.

    Johnson, H. B. Plant pubescence: An ecological perspective. Bot. Rev. 41, 233–258 (1975).

    Article  Google Scholar 

  • 20.

    Fernald, M. L. Gray’s Manual of Botany. (American Book Company, 1950).

  • 21.

    Hernandez-Castillo, G. R., Stockey, R. A., Rothwell, G. W. & Mapes, G. Reconstructing Emporia lockardii (Voltziales: Emporiaceae) and initial thoughts on paleozoic conifer ecology. Int. J. Plant Sci. 170, 1056–1074 (2009).

    Article  Google Scholar 

  • 22.

    Rothwell, G. W., Mapes, G. & Hernandez-Castillo, G. R. Hanskerpia gen. nov. and phylogenetic relationships among the most ancient conifers (Voltziales). Taxon 54, 733–750 (2005).

  • 23.

    Heinrich, M. Das Harz der Nadelhölzer, seine Entstehung, Vertheilung, Bedeutung und Gewinnung (Springer, Berlin, 1894).

    Google Scholar 

  • 24.

    Tomlin, E. S., Antonejevic, E., Alfaro, R. I. & Borden, J. H. Changes in volatile terpene and diterpene resin acid composition of resistant and susceptible white spruce leaders exposed to simulated white pine weevil damage. Tree Physiol. 20, 1087–1095 (2000).

    Article  CAS  Google Scholar 

  • 25.

    Birol, I. et al. Assembling the 20 Gb white spruce (Picea glauca) genome from whole-genome shotgun sequencing data. Bioinformatics 29, 1492–1497 (2013).

    Article  CAS  Google Scholar 

  • 26.

    Warren, R. L. et al. Improved white spruce (Picea glauca) genome assemblies and annotation of large gene families of conifer terpenoid and phenolic defense metabolism. Plant J. 83, 189–212 (2015).

    Article  CAS  Google Scholar 

  • 27.

    Zulak, K. G., Dullat, H. K., Keeling, C. I., Lippert, D. & Bohlmann, J. Immunofluorescence localization of levopimaradiene/abietadiene synthase in methyl jasmonate treated stems of Sitka spruce (Picea sitchensis) shows activation of diterpenoid biosynthesis in cortical and developing traumatic resin ducts. Phytochemistry 71, 1695–1699 (2010).

    Article  CAS  Google Scholar 

  • 28.

    Whitehill, J. G. A., Henderson, H., Strong, W., Jaquish, B. & Bohlmann, J. Function of Sitka spruce stone cells as a physical defense against white pine weevil. Plant. Cell Environ. 39, 2545–2556 (2016).

    Article  CAS  Google Scholar 

  • 29.

    Franceschi, V. R., Krokene, P., Krekling, T. & Christiansen, E. Phloem parenchyma cells are involved in local and distant defense responses to fungal inoculation or bark-beetle attack in Norway spruce (Pinaceae). Am. J. Bot. 87, 314–326 (2000).

    Article  CAS  Google Scholar 

  • 30.

    Parent, G. J., Giguère, I., Mageroy, M., Bohlmann, J. & MacKay, J. J. Evolution of the biosynthesis of two hydroxyacetophenones in plants. Plant Cell Environ. 41, 620–629 (2018).

    Article  CAS  Google Scholar 

  • 31.

    Mageroy, M. H. et al. A conifer UDP-sugar dependent glycosyltransferase contributes to acetophenone metabolism and defense against insects. Plant Physiol. 175, 00611.2017 (2017).

  • 32.

    Tissier, A. Glandular trichomes: What comes after expressed sequence tags?. Plant J. 70, 51–68 (2012).

    Article  CAS  Google Scholar 

  • 33.

    Sacher, J. A. Structure and seasonal activity of the shoot apices of Pinus lambertiana and Pinus ponderosa. Am. J. Bot. 41, 749–759 (1954).

    Article  Google Scholar 

  • 34.

    De Simón, B. F., Vallejo, M. C. G., Cadahía, E., Miguel, C. A. & Martinez, M. C. Analysis of lipophilic compounds in needles of Pinus pinea L. Ann. For. Sci. 58, 449–454 (2001).

    Article  Google Scholar 

  • 35.

    Lange, W. & Weissman, G. Untersuchungen der Harzbalsame von Pinus resinosa Ait. und Pinus pinea L. Holz als Roh- und Werkst. 49, 476–480 (1991).

  • 36.

    Geisler, K., Jensen, N. B., Yuen, M. M. S., Madilao, L. & Bohlmann, J. Modularity of conifer diterpene resin acid biosynthesis: P450 enzymes of different CYP720B clades use alternative substrates and converge on the same products. Plant Physiol. 171, 152–164 (2016).

    Article  CAS  Google Scholar 

  • 37.

    Hamberger, B., Ohnishi, T., Hamberger, B., Séguin, A. & Bohlmann, J. Evolution of diterpene metabolism: Sitka spruce CYP720B4 catalyzes multiple oxidations in resin acid biosynthesis of conifer defense against insects. Plant Physiol. 157, 1677–1695 (2011).

    Article  CAS  Google Scholar 

  • 38.

    Ro, D., Arimura, G., Lau, S. Y. W., Piers, E. & Bohlmann, J. Loblolly pine abietadienol/abietadienal oxidase PtAO (CYP720B1) is a multifunctional, multisubstrate cytochrome P450 monooxygenase. Proc. Natl. Acad. Sci. USA 102, 8060–8065 (2005).

    ADS  Article  CAS  Google Scholar 

  • 39.

    Hilker, M., Stein, C., Schröder, R., Varama, M. & Mumm, R. Insect egg deposition induces defence responses in Pinus sylvestris: characterisation of the elicitor. J. Exp. Biol. 208, 1849–1854 (2005).

    Article  Google Scholar 

  • 40.

    Schuurink, R. & Tissier, A. Glandular trichomes: Micro-organs with model status?. New Phytol. https://doi.org/10.1111/nph.16283 (2019).

    Article  PubMed  Google Scholar 

  • 41.

    Huchelmann, A., Boutry, M. & Hachez, C. Plant glandular trichomes: Natural cell factories of high biotechnological interest. Plant Physiol. 175, 00727.2017 (2017).

  • 42.

    Sallaud, C. et al. Characterization of two genes for the biosynthesis of the labdane diterpene Z-abienol in tobacco (Nicotiana tabacum) glandular trichomes. Plant J. 72, 1–17 (2012).

    Article  CAS  Google Scholar 

  • 43.

    Liu, Y. et al. A geranylfarnesyl diphosphate synthase provides the precursor for sesterterpenoid (C25) formation in the glandular trichomes of the mint species Leucosceptrum canum. Plant Cell 28, 804–822 (2016).

    Article  CAS  Google Scholar 

  • 44.

    Reynolds, E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Biol. 17, 208–212 (1963).

    Article  CAS  Google Scholar 


  • Source: Ecology - nature.com

    Novel gas-capture approach advances nuclear fuel management

    Confirmation of ovarian follicles in an enantiornithine (Aves) from the Jehol biota using soft tissue analyses