in

Habitat patches for newts in the face of climate change: local scale assessment combining niche modelling and graph theory

  • 1.

    Nori, J. et al. Amphibian conservation, land-use changes and protected areas: A global overview. Biol. Conserv. 191, 367–374 (2015).

    • Article
    • Google Scholar
  • 2.

    Blaustein, A. R. et al. In Year in Ecology and Conservation Biology Vol. 1223 Annals of the New York Academy of Sciences (eds Ostfeld, R. S. & Schlesinger, W. H.) 108–119 (Blackwell Science Publ, 2011).

  • 3.

    Hof, C., Araujo, M. B., Jetz, W. & Rahbek, C. Additive threats from pathogens, climate and land-use change for global amphibian diversity. Nat. 480, 516–519 (2011).

  • 4.

    Carey, C. & Alexander, M. A. Climate change and amphibian declines: is there a link? Diversity Distrib. 9, 111–121 (2003).

    • Article
    • Google Scholar
  • 5.

    Li, Y. M., Cohen, J. M. & Rohr, J. R. Review and synthesis of the effects of climate change on amphibians. Integr. Zool. 8, 145–161 (2013).

  • 6.

    O’Regan, S. M., Palen, W. J. & Anderson, S. C. Climate warming mediates negative impacts of rapid pond drying for three amphibian species. Ecol. 95, 845–855 (2014).

    • Article
    • Google Scholar
  • 7.

    Araujo, M. B., Thuiller, W. & Pearson, R. G. Climate warming and the decline of amphibians and reptiles in Europe. J. Biogeography 33, 1712–1728 (2006).

    • Article
    • Google Scholar
  • 8.

    Dolgener, N., Freudenberger, L., Schneeweiss, N., Ibisch, P. L. & Tiedemann, R. Projecting current and potential future distribution of the Fire-bellied toad Bombina bombina under climate change in north-eastern Germany. Reg. Env. Change 14, 1063–1072 (2014).

    • Article
    • Google Scholar
  • 9.

    Girardello, M., Griggio, M., Whittingham, M. J. & Rushton, S. P. Models of climate associations and distributions of amphibians in Italy. Ecol. Res. 25, 103–111 (2010).

    • Article
    • Google Scholar
  • 10.

    Aguirre-Gutiérrez, J. et al. Historical changes in the importance of climate and land use as determinants of Dutch pollinator distributions. J. Biogeography 44, 696–707 (2017).

    • Article
    • Google Scholar
  • 11.

    Marshall, L. et al. The interplay of climate and land use change affects the distribution of EU bumblebees. Glob. Chang. Biol. 24, 101–116 (2017).

  • 12.

    Thuiller, W., Araujo, M. B. & Lavorel, S. Do we need land-cover data to model species distributions in Europe? J. Biogeography 31, 353–361 (2004).

    • Article
    • Google Scholar
  • 13.

    Préau, C., Isselin-Nondedeu, F., Sellier, Y., Bertrand, R. & Grandjean, F. Predicting suitable habitats of four range margin amphibians under climate and land-use changes in southwestern France. Reg. Env. Change 19, 27–38 (2018).

    • Article
    • Google Scholar
  • 14.

    Arntzen, J. W., Abrahams, C., Meilink, W. R. M., Iosif, R. & Zuiderwijk, A. Amphibian decline, pond loss and reduced population connectivity under agricultural intensification over a 38 year period. Biodivers. Conserv. 26, 1411–1430 (2017).

    • Article
    • Google Scholar
  • 15.

    Piha, H., Luoto, M. & Merila, J. Amphibian occurrence is influenced by current and historic landscape characteristics. Ecol. Appl. 17, 2298–2309 (2007).

  • 16.

    Taylor, P. D., Fahrig, L. & With, K. A. In Connectivity Conservation Conservation Biology (eds Kevin R. Crooks & M. Sanjayan) 29-43 (Cambridge University Press, 2006).

  • 17.

    Rudnick, D. et al. The role of landscape connectivity in planning and implementing conservation and restoration priorities. Issues Ecol. 16, 1–20 (2012).

    • Google Scholar
  • 18.

    Urban, D. & Keitt, T. Landscape connectivity: A graph-theoretic perspective. Ecol. 82, 1205–1218 (2001).

    • Article
    • Google Scholar
  • 19.

    Foltête, J.-C., Girardet, X. & Clauzel, C. A methodological framework for the use of landscape graphs in land-use planning. Landsc. Urban. Plan. 124, 140–150 (2014).

    • Article
    • Google Scholar
  • 20.

    Tarabon, S., Bergès, L., Dutoit, T. & Isselin-Nondedeu, F. Environmental impact assessment of development projects improved by merging species distribution and habitat connectivity modelling. J. Environ. Manag. 241, 439–449 (2019).

    • Article
    • Google Scholar
  • 21.

    Zeller, K. A., McGarigal, K. & Whiteley, A. R. Estimating landscape resistance to movement: a review. Landsc. Ecol. 27, 777–797 (2012).

    • Article
    • Google Scholar
  • 22.

    Clauzel, C., Bannwarth, C. & Foltete, J.-C. Integrating regional-scale connectivity in habitat restoration: An application for amphibian conservation in eastern France. J. Nat. Conserv. 23, 98–107 (2015).

    • Article
    • Google Scholar
  • 23.

    Duflot, R., Avon, C., Roche, P. & Bergès, L. Combining habitat suitability models and spatial graphs for more effective landscape conservation planning: An applied methodological framework and a species case study. J. Nat. Conserv. 46, 38–47 (2018).

    • Article
    • Google Scholar
  • 24.

    Le Roux, M. et al. Conservation planning with spatially explicit models: a case for horseshoe bats in complex mountain landscapes. Landsc. Ecol. 32, 1005–1021 (2017).

    • Article
    • Google Scholar
  • 25.

    Baranyi, G., Saura, S., Podani, J. & Jordán, F. Contribution of habitat patches to network connectivity: Redundancy and uniqueness of topological indices. Ecol. Indic. 11, 1301–1310 (2011).

    • Article
    • Google Scholar
  • 26.

    Ziółkowska, E., Ostapowicz, K., Radeloff, V. C. & Kuemmerle, T. Effects of different matrix representations and connectivity measures on habitat network assessments. Landsc. Ecol. 29, 1551–1570 (2014).

    • Article
    • Google Scholar
  • 27.

    Goncalves, J., Honrado, J. P., Vicente, J. R. & Civantos, E. A model-based framework for assessing the vulnerability of low dispersal vertebrates to landscape fragmentation under environmental change. Ecol. Complex. 28, 174–186 (2016).

    • Article
    • Google Scholar
  • 28.

    Sahraoui, Y., Foltete, J.-C. & Clauzel, C. A multi-species approach for assessing the impact of land-cover changes on landscape connectivity. Landsc. Ecol. 32, 1819–1835 (2017).

    • Article
    • Google Scholar
  • 29.

    Arntzen, J. W. et al. Triturus cristatus. The IUCN Red List of Threatened Species 2009: e.T22212A9365894, https://doi.org/10.2305/IUCN.UK.2009.RLTS.T22212A9365894.en (2009).

  • 30.

    Arntzen, J. W. et al. Triturus marmoratus. The IUCN Red List of Threatened Species 2009: e.T59477A11949129, https://doi.org/10.2305/IUCN.UK.2009.RLTS.T59477A11949129.en (2009).

  • 31.

    M d’Etat, Ministère de l’écologie du développement et de l’aménagement durables, pêche. Arrêté du 19 novembre 2007 fixant les listes des amphibiens et des reptiles protégés sur l’ensemble du territoire et les modalités de leur protection. Journal Officiel n°0293 du 18 décembre (2007).

  • 32.

    Council of the European Union. Council Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora. pp. 0007 – 0050 (1992).

  • 33.

    PCN. Liste rouge du Poitou-Charentes: chapitre Amphibiens et Reptiles. (Fontaine-le-Comte, 2016), http://www.poitou-charentes-nature.asso.fr/wp-content/uploads/2019/06/Liste_Rouge_AMPHIBIENS-REPTILES_PC_2016.pdf. Accessed 05 July (2019).

  • 34.

    GBIF.org (16th March 2018) GBIF Occurrence Download, https://doi.org/10.15468/dl.mkv0mx.

  • 35.

    GBIF.org (21st June 2018) GBIF Occurrence Download, https://doi.org/10.15468/dl.eyhf39.

  • 36.

    Thuiller, W., Georges, D., Engler, R., Georges, M. D. & Thuiller, C. W. Package ‘biomod2’, https://cran.r-project.org/web/packages/biomod2/biomod2.pdf (2012).

  • 37.

    Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

    • Article
    • Google Scholar
  • 38.

    Leroy, B. et al. Forecasted climate and land use changes, and protected areas: the contrasting case of spiders. Diversity Distrib. 20, 686–697 (2014).

    • Article
    • Google Scholar
  • 39.

    Hanley, J. A. & McNeil, B. J. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143, 29–36 (1982).

  • 40.

    Allouche, O., Tsoar, A. & Kadmon, R. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43, 1223–1232 (2006).

    • Article
    • Google Scholar
  • 41.

    Araújo, M. B. & New, M. Ensemble forecasting of species distributions. Trends Ecol. Evolution 22, 42–47 (2007).

    • Article
    • Google Scholar
  • 42.

    Meller, L. et al. Ensemble distribution models in conservation prioritization: from consensus predictions to consensus reserve networks. Diversity Distrib. 20, 309–321 (2014).

    • Article
    • Google Scholar
  • 43.

    Takolander, A., Hickler, T., Meller, L. & Cabeza, M. Comparing future shifts in tree species distributions across Europe projected by statistical and dynamic process-based models. Reg. Env. Change 19, 251–266 (2019).

    • Article
    • Google Scholar
  • 44.

    Thuiller, W., Lavorel, S., Araújo, M. B., Sykes, M. T. & Prentice, I. C. Climate change threats to plant diversity in Europe. Proc. Natl Acad. Sci. U S Am. 102, 8245 (2005).

  • 45.

    Guisan, A., Zimmermann, N. E. & Thuiller, W. In Habitat Suitability and Distribution Models: With Applications in R Ecology, Biodiversity and Conservation (eds Antoine Guisan, Niklaus E. Zimmermann, & Wilfried Thuiller) (Cambridge University Press, 2017).

  • 46.

    Bertrand, R. et al. Ecological constraints increase the climatic debt in forests. Nat. Commun. 7, 12643 (2016).

  • 47.

    Hijmans, R. J. & Elith, J. package ‘dismo’, https://cran.r-project.org/web/packages/dismo/vignettes/sdm.pdf (2017).

  • 48.

    IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change 1535 pp (Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2013).

  • 49.

    Elith, J., Kearney, M. & Phillips, S. The art of modelling range‐shifting species. Methods Ecol. Evolution 1, 330–342 (2010).

    • Article
    • Google Scholar
  • 50.

    Boria, R. A., Olson, L. E., Goodman, S. M. & Anderson, R. P. Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecol. Model. 275, 73–77 (2014).

    • Article
    • Google Scholar
  • 51.

    Miller, V. C. A Quantitative Geomorphic Study of Drainage Basin Characteristics in the Clinch Mountain Area, Virginia and Tennessee 389–402 (Department of Geology Columbia University, New York, 1953).

  • 52.

    Barbet-Massin, M., Jiguet, F., Albert, C. H. & Thuiller, W. Selecting pseudo-absences for species distribution models: how, where and how many? Methods Ecol. Evolution 3, 327–338 (2012).

    • Article
    • Google Scholar
  • 53.

    Fournier, A., Barbet-Massin, M., Rome, Q. & Courchamp, F. Predicting species distribution combining multi-scale drivers. Glob. Ecol. Conserv. 12, 215–226 (2017).

    • Article
    • Google Scholar
  • 54.

    Hattab, T. et al. Towards a better understanding of potential impacts of climate change on marine species distribution: a multiscale modelling approach. Glob. Ecol. Biogeography 23, 1417–1429 (2014).

    • Article
    • Google Scholar
  • 55.

    Moran, P. A. P. A Test for the Serial Independence of Residuals. Biometrika 37, 178–181 (1950).

  • 56.

    Capinha, C., Larson, E. R., Tricarico, E., Olden, J. D. & Gherardi, F. Effects of climate change, invasive species, and disease on the distribution of native European crayfishes. Conserv. Biol. 27, 731–740 (2013).

  • 57.

    Pearson, R. G., Raxworthy, C. J., Nakamura, M. & Townsend Peterson, A. ORIGINAL ARTICLE: Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J. Biogeography 34, 102–117 (2007).

    • Article
    • Google Scholar
  • 58.

    Foltête, J.-C., Clauzel, C. & Vuidel, G. A software tool dedicated to the modelling of landscape networks. Environ. Model. Softw. 38, 316–327 (2012).

    • Article
    • Google Scholar
  • 59.

    Keeley, A. T. H., Beier, P. & Gagnon, J. W. Estimating landscape resistance from habitat suitability: effects of data source and nonlinearities. Landsc. Ecol. 31, 2151–2162 (2016).

    • Article
    • Google Scholar
  • 60.

    Pittman, S. E., Osbourn, M. S. & Semlitsch, R. D. Movement ecology of amphibians: A missing component for understanding population declines. Biol. Conserv. 169, 44–53 (2014).

    • Article
    • Google Scholar
  • 61.

    Trochet, A. et al. Postbreeding Movements in Marbled Newts (Caudata, Salamandridae): A Comparative Radiotracking Study in Two Habitat Types. Herpetologica 73, 1–9 (2017).

    • Article
    • Google Scholar
  • 62.

    Jehle, R. & Arntzen, J. W. Post-breeding migrations of newts (Triturus cristatus and T. marmoratus) with contrasting ecological requirements. J. Zool. 251, 297–306 (2000).

    • Article
    • Google Scholar
  • 63.

    Foltete, J. C., Clauzel, C., Vuidel, G. & Tournant, P. Integrating graph-based connectivity metrics into species distribution models. Landsc. Ecol. 27, 557–569 (2012).

    • Article
    • Google Scholar
  • 64.

    Hirzel, A. H. & Le Lay, G. Habitat suitability modelling and niche theory. J. Appl. Ecol. 45, 1372–1381 (2008).

    • Article
    • Google Scholar
  • 65.

    Trumbo, D. R. et al. Integrating local breeding pond, landcover, and climate factors in predicting amphibian distributions. Landsc. Ecol. 27, 1183–1196 (2012).

    • Article
    • Google Scholar
  • 66.

    Curado, N., Hartel, T. & Arntzen, J. W. Amphibian pond loss as a function of landscape change – A case study over three decades in an agricultural area of northern France. Biol. Conserv. 144, 1610–1618 (2011).

    • Article
    • Google Scholar
  • 67.

    Walther, G.-R. et al. Ecological responses to recent climate change. Nat. 416, 389–395 (2002).

  • 68.

    Stevens, V. M. & Baguette, M. Importance of Habitat Quality and Landscape Connectivity for the Persistence of Endangered Natterjack Toads. Conserv. Biol. 22, 1194–1204 (2008).

  • 69.

    Luque, S., Saura, S. & Fortin, M.-J. Landscape connectivity analysis for conservation: insights from combining new methods with ecological and genetic data. Landsc. Ecol. 27, 153–157 (2012).

    • Article
    • Google Scholar
  • 70.

    Titeux, N. et al. Biodiversity scenarios neglect future land-use changes. Glob. Change Biol. 22, 2505–2515 (2016).

  • 71.

    Decout, S., Manel, S., Miaud, C. & Luque, S. Integrative approach for landscape-based graph connectivity analysis: a case study with the common frog (Rana temporaria) in human-dominated landscapes. Landsc. Ecol. 27, 267–279 (2012).

    • Article
    • Google Scholar
  • 72.

    McMenamin, S. K., Hadly, E. A. & Wright, C. K. Climatic change and wetland desiccation cause amphibian decline in Yellowstone National Park. Proc. Natl Acad. Sci. U S Am. 105, 16988–16993 (2008).

  • 73.

    Albert, C. H., Rayfield, B., Dumitru, M. & Gonzalez, A. Applying network theory to prioritize multispecies habitat networks that are robust to climate and land-use change. Conserv. Biol. 31, 1383–1396 (2017).

  • 74.

    Quesnelle, P. E., Lindsay, K. E. & Fahrig, L. Relative effects of landscape-scale wetland amount and landscape matrix quality on wetland vertebrates: a meta-analysis. Ecol. Appl. 25, 812–825 (2015).

  • 75.

    Rothermel, B. B. & Semlitsch, R. D. An experimental investigation of landscape resistance of forest versus old-field habitats to emigrating juvenile amphibians. Conserv. Biol. 16, 1324–1332 (2002).

    • Article
    • Google Scholar
  • 76.

    Todd, B. D., Blomquist, S. M., Harper, E. B. & Osbourn, M. S. Effects of timber harvesting on terrestrial survival of pond-breeding amphibians. For. Ecol. Manag. 313, 123–131 (2014).

    • Article
    • Google Scholar
  • 77.

    Todd, B. D., Luhring, T. M., Rothermel, B. B. & Gibbons, J. W. Effects of forest removal on amphibian migrations: implications for habitat and landscape connectivity. J. Appl. Ecol. 46, 554–561 (2009).

    • Article
    • Google Scholar
  • 78.

    Jehle, R. The terrestrial summer habitat of radio-tracked great crested newts (Triturus cristatus) and marbled newts (T-marmoratus). Herpetological J. 10, 137–142 (2000).

    • Google Scholar
  • 79.

    Matos, C., Petrovan, S. O., Wheeler, P. M. & Ward, A. I. Landscape connectivity and spatial prioritization in an urbanising world: A network analysis approach for a threatened amphibian. Biol. Conserv. 237, 238–247 (2019).

    • Article
    • Google Scholar
  • 80.

    Clobert, J., Le Galliard, J.-F., Cote, J., Meylan, S. & Massot, M. Informed dispersal, heterogeneity in animal dispersal syndromes and the dynamics of spatially structured populations. Ecol. Lett. 12, 197–209 (2009).

  • 81.

    Avon, C. & Bergès, L. Prioritization of habitat patches for landscape connectivity conservation differs between least-cost and resistance distances. Landsc. Ecol. 31, 1551–1565 (2016).

    • Article
    • Google Scholar
  • 82.

    Stanton, J. C., Pearson, R. G., Horning, N., Ersts, P. & Akcakaya, H. R. Combining static and dynamic variables in species distribution models under climate change. Methods Ecol. Evolution 3, 349–357 (2012).

    • Article
    • Google Scholar
  • 83.

    Newbold, T. Future effects of climate and land-use change on terrestrial vertebrate community diversity under different scenarios. Proc. R. Soc. B-Biological Sci. 285, 20180792 (2018).

    • Article
    • Google Scholar
  • 84.

    Oliver, T. H. & Morecroft, M. D. Interactions between climate change and land use change on biodiversity: attribution problems, risks, and opportunities. Wiley Interdiscip. Reviews: Clim. Change 5, 317–335 (2014).

    • Google Scholar
  • 85.

    Unglaub, B., Steinfartz, S., Kuhne, D., Haas, A. & Schmidt, B. R. The relationships between habitat suitability, population size and body condition in a pond-breeding amphibian. Basic. Appl. Ecol. 27, 20–29 (2018).

    • Article
    • Google Scholar
  • 86.

    Shoo, L. P. et al. Engineering a future for amphibians under climate change. J. Appl. Ecol. 48, 487–492 (2011).

    • Article
    • Google Scholar
  • 87.

    Kujala, H., Moilanen, A., Araujo, M. B. & Cabeza, M. Conservation Planning with Uncertain Climate Change Projections. PLoS One 8, 12 (2013).

    • Google Scholar

  • Source: Ecology - nature.com

    Podcast: Mapping fruit flies’ neural circuitry, and perfecting the properties of metallic glass

    Deep cuts in greenhouse emissions are tough but doable, experts say