in

Habitat provided by native species facilitates higher abundances of an invader in its introduced compared to native range

  • 1.

    Doherty, T. S., Glen, A. S., Nimmo, D. G., Ritchie, E. G. & Dickman, C. R. Invasive predators and global biodiversity loss. Proceedings of the National Academy of Sciences 113, 11261–11265 (2016).

  • 2.

    Levine, J. M. et al. Mechanisms underlying the impacts of exotic plant invasions. Proc. R. Soc. Lond. 270, 775–781 (2003).

  • 3.

    Gribben, P. E. & Byers, J. E. Comparative biogeography of marine invaders across their native and introduced ranges. Oceanogr. Mar. Biol. Ann. Rev. 58 (In Press).

  • 4.

    Keane, R. M. & Crawley, M. J. Exotic plant invasions and the enemy release hypothesis. Trends in Ecology & Evolution 17, 164–170, https://doi.org/10.1016/s0169-5347(02)02499-0 (2002).

  • 5.

    Colautti, R. I., Ricciardi, A., Grigorovich, I. A. & MacIsaac, H. J. Is invasion success explained by the enemy release hypothesis? Ecol. Lett. 7, 721–733, https://doi.org/10.1111/j.1461-0248.2004.00616.x (2004).

    • Article
    • Google Scholar
  • 6.

    Torchin, M. E., Lafferty, K. D., Dobson, A. P., McKenzie, V. J. & Kuris, A. M. Introduced species and their missing parasites. Nature 421, 628–630, https://doi.org/10.1038/nature01346 (2003).

  • 7.

    Blossey, B. & Notzold, R. Evolution of increased competitive ability in invasive nonindigenous plants – a hypothesis. J. Ecol. 83, 887–889, https://doi.org/10.2307/2261425 (1995).

    • Article
    • Google Scholar
  • 8.

    Inderjit et al. Volatile chemicals from leaf litter are associated with invasiveness of a Neotropical weed in Asia. Ecology 92, 316–324, https://doi.org/10.1890/10-0400.1 (2011).

  • 9.

    Kaur, R. et al. Community impacts of Prosopis juliflora invasion: biogeographic and congeneric comparisons. PloS one 7, e44966–e44966, https://doi.org/10.1371/journal.pone.0044966 (2012).

  • 10.

    Bruno, J. F. & Bertness, V. In Marine Community Ecology (eds MD Bertness, SD Gaines, & ME Hay) 201–218 (Sinuaer Associates Inc., 2001).

  • 11.

    Stachowicz, J. J. Mutualism, facilitation, and the structure of ecological communities: positive interactions play a critical, but underappreciated, role in ecological communities by reducing physical or biotic stresses in existing habitats and by creating new habitats on which many species depend. Bioscience 51, 235–246 (2001).

    • Article
    • Google Scholar
  • 12.

    Bruno, J. F., Stachowicz, J. J. & Bertness, M. D. Inclusion of facilitation into ecological theory. Trends Ecol. Evol. 18, 119–125 (2003).

    • Article
    • Google Scholar
  • 13.

    Ellwood, M. D. & Foster, W. A. Doubling the estimate of invertebrate biomass in a rainforest canopy. Nature 429, 549–551 (2004).

  • 14.

    Gribben, P. E. et al. Facilitation cascades in marine ecosystems: A synthesis and future directions. Oceanogr. Mar. Biol. Ann. Rev. 57, 127–168 (2019).

    • Article
    • Google Scholar
  • 15.

    Thomsen, M. S. et al. Secondary foundation species enhance biodiversity. Nature Ecology & Evolution 2, 634–639, https://doi.org/10.1038/s41559-018-0487-5 (2018).

    • Article
    • Google Scholar
  • 16.

    Bulleri, F., Bruno, J. F. & Benedetti-Cecchi, L. Beyond competition: incorporating positive interactions between species to predict ecosystem invasibility. PLoS Biol. 6, e162 (2008).

    • Article
    • Google Scholar
  • 17.

    Northfield, T. D. et al. Native turncoats and indirect facilitation of species invasions. Proc. R. Soc. B 285, 20171936 (2018).

    • Article
    • Google Scholar
  • 18.

    Rodriguez, L. F. Can invasive species facilitate native species? Evidence of how, when, and why these impacts occur. Biol. Inv. 8, 927–939 (2006).

    • Article
    • Google Scholar
  • 19.

    Simberloff, D. & Von Holle, B. Positive interactions of nonindigenous species: invasional meltdown? Biol. Inv. 1, 21–32 (1999).

    • Google Scholar
  • 20.

    Relva, M. A., Nunez, M. A. & Simberloff, D. Introduced deer reduce native plant cover and facilitate invasion of non-native tree species: evidence for invasional meltdown. Biol. Inv. 12, 303–311 (2010).

    • Article
    • Google Scholar
  • 21.

    Stout, J. C. & Tiedeken, E. J. Direct interactions between invasive plants and native pollinators: evidence, impacts and approaches. Func. Ecol. 31, 38–46 (2017).

    • Article
    • Google Scholar
  • 22.

    Reinhart, K. O. & Callaway, R. M. Soil biota and invasive plants. New Phytologist 170, 445–457 (2006).

    • Article
    • Google Scholar
  • 23.

    Jones, C. G., Lawton, J. H. & Shachak, M. Organisms as ecosystem engineers. Oikos 69, 373–386 (1994).

    • Article
    • Google Scholar
  • 24.

    Jones, C. G., Lawton, J. H. & Shachak, M. Positive and negative effects of organisms as physical ecosystem engineers. Ecology 78, 1946–1957 (1997).

    • Article
    • Google Scholar
  • 25.

    Cavieres, L. A., Badano, E. I., Sierra-Almeida, A. & Molina-Montenegro, M. A. Microclimatic modifications of cushion plants and their consequences for seedling survival of native and non-native herbaceous species in the high Andes of Central Chile. Arctic, Antarctic, and Alpine Research 39, 229–236, doi:10.1657/1523-0430(2007)39[229:MMOCPA]2.0.CO;2 (2007).

  • 26.

    Altieri, A. H., van Wesenbeeck, B. K., Bertness, M. D. & Silliman, B. R. Facilitation cascade drives positive relationship between native biodiversity and invasion success. Ecology 91, 1269–1275 (2010).

    • Article
    • Google Scholar
  • 27.

    Byers, J. E., Gribben, P. E., Yeager, C. & Sotka, E. E. Impacts of an abundant introduced ecosystem engineer within mudflats of the southeastern US coast. Biol. Inv. 14, 2587–2600, https://doi.org/10.1007/s10530-012-0254-5 (2012).

    • Article
    • Google Scholar
  • 28.

    Wright, J. T., Gribben, P. E. & Latzel, S. Native ecosystem engineer facilitates recruitment of invasive crab and native invertebrates. Biol. Inv. 18, 3163–3173, https://doi.org/10.1007/s10530-016-1206-2 (2016).

    • Article
    • Google Scholar
  • 29.

    Thomsen, M. S. & McGlathery, K. Facilitation of macroalgae by the sedimentary tube forming polychaete Diopatra cuprea. Estuarine Coastal & Shelf Science 62, 63–73 (2005).

  • 30.

    Dartnall, A. J. New Zealand sea stars in Tasmania. Papers and Proceedings of the Royal Society of Tasmania 103, 53–55 (1969).

    • Google Scholar
  • 31.

    King, R. Systematic relationships between Tasmanian and New Zealand populations of Petrolisthes elongatus (Crustacea: Anomura: Porcellanidea) Bachelor of Science (Honours) thesis, University of Melbourne (1997).

  • 32.

    Gribben, P. E., Simpson, M. & Wright, J. T. Relationships between an invasive crab, habitat availability and intertidal community structure at biogeographic scales. Marine Environmental Research 110, 124–131, https://doi.org/10.1016/j.marenvres.2015.08.006 (2015).

  • 33.

    Wright, J. T. & Gribben, P. E. Disturbance-mediated facilitation by an intertidal ecosystem engineer. Ecology (2017).

  • 34.

    Gribben, P. E. et al. Biogeographic comparisons of the traits and abundance of an invasive crab throughout its native and invasive ranges. Biol. Inv. 5, 1877–1885, https://doi.org/10.1007/s10530-013-0416-0 (2013).

    • Article
    • Google Scholar
  • 35.

    Wright, J. T., Holmes, Z. C. & Byers, J. E. Stronger positive association between an invasive crab and a native intertidal ecosystem engineer with increasing wave exposure. Marine Environmental Research 142, 124–129 (2018).

  • 36.

    Uyà, M., Bulleri, F., Wright, J. T. & Gribben, P. E. Facilitation of an invader by a native habitat-former increases along interacting gradients of environmental stress. Ecology n/a, e02961, https://doi.org/10.1002/ecy.2961.

  • 37.

    Hierro, J. L., Maron, J. L. & Callaway, R. M. A biogeographical approach to plant invasions: the importance of studying exotics in their introduced and native range. J. Ecol. 93, 5–15 (2005).

    • Article
    • Google Scholar
  • 38.

    Callaway, R. M., Thelen, G. C., Rodriguez, A. & Holben, W. E. Soil biota and exotic plant invasion. Nature 427, 731–733, doi:http://www.nature.com/nature/journal/v427/n6976/suppinfo/nature02322_S1.html (2004).

  • 39.

    Reinhart, K. O., Packer, A., Van der Putten, W. H. & Clay, K. Plant–soil biota interactions and spatial distribution of black cherry in its native and invasive ranges. Ecol. Lett. 6, 1046–1050 (2003).

    • Article
    • Google Scholar
  • 40.

    Prior, K. M. & Hellmann, J. J. Does enemy loss cause release? A biogeographical comparison of parasitoid effects on an introduced insect. Ecology 94, 1015–1024 (2013).

    • Article
    • Google Scholar
  • 41.

    DeWalt, S. J., Denslow, J. S. & Ickes, K. Natural-enemy release facilitates habitat expansion of the invasive tropical shrub Clidemia hirta. Ecology 85, 471–483 (2004).

  • 42.

    Bertness, M. D., Leonard, G. H., Levine, J. M., Schmidt, P. R. & Ingraham, A. O. Testing the relative contribution of positive and negative interactions in rocky intertidal communities. Ecology 80, 2711–2726, https://doi.org/10.1890/0012-9658(1999)080[2711:TTRCOP]2.0.CO;2 (1999).

    • Article
    • Google Scholar
  • 43.

    Gribben, P. E. & Wright, J. T. Invasive seaweed enhances recruitment of a native bivalve: roles of refuge from predation and habitat choice. Mar. Ecol. Prog. Ser. 318, 177–185 (2006).

  • 44.

    Grosholz, E. D. & Ruiz, G. M. Biological invasions drive size increases in marine and estuarine invertebrates. Ecol. Lett. 6, 700–705 (2003).

    • Article
    • Google Scholar
  • 45.

    Levine, J. M., Adler, P. B. & Yelenik, S. G. A meta-analysis of biotic resistance to exotic plant invasions. Ecol. Lett. 7, 975–989, https://doi.org/10.1111/j.1461-0248.2004.00657.x (2004).

    • Article
    • Google Scholar
  • 46.

    Wassick, A., Baeza, J. A., Fowler, A. & Wilber, D. Reproductive performance of the marine green porcelain crab Petrolisthes armatus Gibbes, 1850 in its introduced range favors further range expansion. Aquat. Invasions 12 (2017).

  • 47.

    Hollebone, A. L. & Hay, M. E. Population dynamics of the non-native crab Petrolisthes armatus invading the South Atlantic Bight at densities of thousands m−2. Mar. Ecol. Prog. Ser. 336, 211–223 (2007).

  • 48.

    Hiller, A. & Lessios, H. A. Phylogeography of Petrolisthes armatus, an invasive species with low dispersal ability. Scientific Reports 7, 3359, https://doi.org/10.1038/s41598-017-03410-8 (2017).

  • 49.

    Gregory, L. P., Campbell, M. L., Primo, C. & Hewitt, C. L. Biotic and abiotic factors affecting the Tasmanian distribution and density of the introduced New Zealand porcelain crab Petrolisthes elongatus. Aquat. Invasions 7, 491–501 (2012).

    • Article
    • Google Scholar
  • 50.

    Bates, D. et al. Package ‘lme4’. R Foundation for Statistical Computing, Vienna (2014).


  • Source: Ecology - nature.com

    The morphology, molecular development and ecological function of pseudonectaries on Nigella damascena (Ranunculaceae) petals

    Bacterial community analysis of floor dust and HEPA filters in air purifiers used in office rooms in ILAS, Beijing