in

Heterogeneous nitrogen fixation rates confer energetic advantage and expanded ecological niche of unicellular diazotroph populations

  • 1.

    Montoya, J. P., Carpenter, E. J. & Capone, D. G. Nitrogen fixation and nitrogen isotope abundances in zooplankton of the oligotrophic North Atlantic. Limnol. Oceanogr. 47, 1617–1628 (2002).

  • 2.

    Hunt, B. P. V. et al. Contribution and pathways of diazotroph-derived nitrogen to zooplankton during the VAHINE mesocosm experiment in the oligotrophic New Caledonia lagoon. Biogeosciences 13, 3131–3145 (2016).

    • Article
    • Google Scholar
  • 3.

    Horii, S., Takahashi, K., Shiozaki, T., Hashihama, F. & Furuya, K. Stable isotopic evidence for the differential contribution of diazotrophs to the epipelagic grazing food chain in the mid-Pacific Ocean. Glob. Ecol. Biogeogr. 27, 1467–1480 (2018).

    • Article
    • Google Scholar
  • 4.

    Loick-Wilde, N. et al. Nitrogen sources and net growth efficiency of zooplankton in three Amazon River plume food webs. Limnol. Oceanogr. 61, 460–481 (2016).

  • 5.

    Kuypers, M. M. M., Marchant, H. K. & Kartal, B. The microbial nitrogen-cycling network. Nat. Rev. Microbiol. 16, 263–276 (2018).

  • 6.

    Gallon, J. R. Reconciling the incompatible: N2 fixation and oxygen. N. Phytol. 122, 571–609 (1992).

  • 7.

    Fay, P. Oxygen relations of nitrogen-fixation in Cyanobacteria. Microbiol Rev. 56, 340–373 (1992).

  • 8.

    Berman-Frank, I. et al. Segregation of nitrogen fixation and oxygenic photosynthesis in the marine Cyanobacterium Trichodesmium. Science 294, 1534–1537 (2001).

  • 9.

    Berman-Frank, I., Lundgren, P. & Falkowski, P. Nitrogen fixation and photosynthetic oxygen evolution in cyanobacteria. Res. Microbiol. 154, 157–164 (2003).

  • 10.

    Sohm, J. A., Webb, E. A. & Capone, D. G. Emerging patterns of marine nitrogen fixation. Nat. Rev. Microbiol 9, 499–508 (2011).

  • 11.

    Moisander, P. H. et al. Unicellular cyanobacterial distributions broaden the oceanic N2 fixation domain. Science 327, 1512–1514 (2010).

  • 12.

    Luo, Y. W. et al. Database of diazotrophs in global ocean: abundance, biomass and nitrogen fixation rates. Earth Syst. Sci. Data 4, 47–73 (2012).

    • Article
    • Google Scholar
  • 13.

    Monteiro, F. M., Follows, M. J. & Dutkiewicz, S. Distribution of diverse nitrogen fixers in the global ocean. Glob. Biogeochemical Cycles 24, GB3017 (2010).

    • Google Scholar
  • 14.

    Zehr, J. P. Nitrogen fixation by marine cyanobacteria. Trends Microbiol 19, 162–173 (2011).

  • 15.

    Zehr, J. P. & Bombar, D. Marine nitrogen fixation: organisms, significance, enigmas, and future directions. In Biological nitrogen fixation (ed. FJ de Bruijn) 857–872 (Wiley, 2015).

  • 16.

    Zehr, J. P. et al. Unicellular cyanobacteria fix N2 in the subtropical North Pacific Ocean. Nature 412, 635–638 (2001).

  • 17.

    Foster, R. A., Sztejrenszus, S. & Kuypers, M. M. Measuring carbon and N2 fixation in field populations of colonial and free-living unicellular cyanobacteria using nanometer-scale secondary ion mass spectrometry. J. Phycol. 49, 502–516 (2013).

  • 18.

    Montoya, J. P. et al. High rates of N2 fixation by unicellular diazotrophs in the oligotrophic Pacific Ocean. Nature 430, 1027–1032 (2004).

  • 19.

    Langlois, R. J., Hummer, D. & LaRoche, J. Abundances and distributions of the dominant nifH phylotypes in the Northern Atlantic Ocean. Appl Environ. Microbiol 74, 1922–1931 (2008).

  • 20.

    Mohr, W., Intermaggio, M. P. & LaRoche, J. Diel rhythm of nitrogen and carbon metabolism in the unicellular, diazotrophic cyanobacterium Crocosphaera watsonii WH8501. Environ. Microbiol 12, 412–421 (2010).

  • 21.

    Dron, A. et al. Light:dark (12:12 h) quantification of carbohydrate fluxes in Crocosphaera watsonii. Aquat. Microb. Ecol. 68, 43–55 (2012).

    • Article
    • Google Scholar
  • 22.

    Masuda, T. et al. Diel regulation of photosynthetic activity in the oceanic unicellular diazotrophic cyanobacterium Crocosphaera watsonii WH8501. Environ. Microbiol. 20, 546–560 (2018).

  • 23.

    Mohr, W., Vagner, T., Kuypers, M. M., Ackermann, M. & La Roche, J. Resolution of conflicting signals at the single-cell level in the regulation of cyanobacterial photosynthesis and nitrogen fixation. PLoS ONE 8, e66060 (2013).

  • 24.

    Langlois, R. J., LaRoche, J. & Raab, P. A. Diazotrophic diversity and distribution in the tropical and subtropical Atlantic Ocean. Appl. Environ. Microbiol. 71, 7910–7919 (2005).

  • 25.

    Foster, R. A. et al. Influence of the Amazon River plume on distributions of free-living and symbiotic cyanobacteria in the western tropical north Atlantic Ocean. Limnol. Oceanogr. 52, 517–532 (2007).

  • 26.

    Bonnet, S. et al. Dynamics of N2 fixation and fate of diazotroph-derived nitrogen in a low-nutrient, low-chlorophyll ecosystem: results from the VAHINE mesocosm experiment (New Caledonia). Biogeosciences 13, 2653–2673 (2016).

  • 27.

    Reddy, K. J., Haskell, B., Sherman, D. M. & Sherman, L. A. Unicellular, aerobic nitrogen-fixing cyanobacteria of the genus Cyanothece. J. Bacteriol. 175, 1284–1292 (1993).

  • 28.

    Červený, J., Sinetova, M. A., Valledor, L., Sherman, L. A. & Nedbal, L. Ultradian metabolic rhythm in the diazotrophic cyanobacterium Cyanothece sp. ATCC 51142. Proc. Natl. Acad. Sci. USA 110, 13210–13215 (2013).

  • 29.

    Tuit, C., Waterbury, J. & Ravizzaz, G. Diel variation of molybdenum and iron in marine diazotrophic cyanobacteria. Limnol. Oceanogr. 49, 978–990 (2004).

  • 30.

    Colón-López, M., Sherman, D. M. & Sherman, L. A. Transcriptional and translational regulation of nitrogenase in light-dark- and continuous-light grown cultures of the unicellular cyanobacterium Cyanothece sp. strain ATCC 51142. J. Bacteriol. 179, 4319–4327 (1997).

  • 31.

    Pennebaker, K., Mackey, K. R. M., Smith, R. M., Williams, S. B. & Zehr, J. P. Diel cycling of DNA staining and nifH gene regulation in the unicellular cyanobacterium Crocosphaera watsonii strain WH 8501 (Cyanophyta). Environ. Microbiol. 12, 1001–1010 (2010).

  • 32.

    Wagner, M. Single-cell ecophysiology of microbes as revealed by Raman microspectroscopy or secondary ion mass spectrometry imaging. Annu. Rev. Microbiol. 63, 411–429 (2009).

  • 33.

    Musat, N., Foster, R., Vagner, T., Adam, B. & Kuypers, M. M. Detecting metabolic activities in single cells, with emphasis on nanoSIMS. FEMS Microbiol. Rev. 36, 486–511 (2012).

  • 34.

    Popa, R. et al. Carbon and nitrogen fixation and metabolite exchange in and between individual cells of Anabaena oscillarioides. ISME J. 1, 354–360 (2007).

  • 35.

    Finzi-Hart, J. A. et al. Fixation and fate of C and N in the cyanobacterium Trichodesmium using nanometer-scale secondary ion mass spectrometry. Proc. Natl. Acad. Sci. USA 106, 9931–9931 (2009).

    • Article
    • Google Scholar
  • 36.

    Marchant, H. K., Mohr, W. & Kuypers, M. M. Recent advances in marine N-cycle studies using 15N labeling methods. Curr. Opin. Biotechnol. 41, 53–59 (2016).

  • 37.

    Martínez-Pérez, C. et al. The small unicellular diazotrophic symbiont, UCYN-A, is a key player in the marine nitrogen cycle. Nat. Microbiol. 1, 16163 (2016).

  • 38.

    Krupke, A. et al. The effect of nutrients on carbon and nitrogen fixation by the UCYN-A–haptophyte symbiosis. ISME J. 9, 1635–1647 (2015).

  • 39.

    Iversen, G. R. Analysis of variance. In: International Encyclopedia of Statistical Science (ed. Lovric M.) (Springer, Berlin, Heidelberg, 2011).

  • 40.

    Bandyopadhyay, A., Elvitigala, T., Liberton, M. & Pakrasi, H. B. Variations in the rhythms of respiration and nitrogen fixation in members of the unicellular diazotrophic cyanobacterial genus Cyanothece. Plant Physiol. 161, 1334–1346 (2013).

  • 41.

    Stȩpniak, C. Coefficient of variation. In: International Encyclopedia of Statistical Science (ed. Lovric M.) (Springer, Berlin, Heidelberg, 2011).

  • 42.

    Zhang, C., Mapes, B. E. & Soden, B. J. Bimodality in tropical water vapour. Q. J. R. Meteorological Soc. 129, 2847–2866 (2003).

    • Article
    • Google Scholar
  • 43.

    Großkopf, T. & Laroche, J. Direct and indirect costs of dinitrogen fixation in Crocosphaera watsonii WH8501 and possible implications for the nitrogen cycle. Front. Microbiol. 3, 236 (2012).

  • 44.

    Inomura, K., Bragg, J. & Follows, M. J. A quantitative analysis of the direct and indirect costs of nitrogen fixation: a model based on Azotobacter vinelandii. ISME J. 11, 166–175 (2017).

  • 45.

    Rittmann, B. E. & McCarty, P. L. Stoichiometry and bacterial energetics. In: Environmental Biotechnology: Principles and Applications. 126–164 (McGraw-Hill, New York, NY, USA, 2001).

  • 46.

    Fu, F. X. et al. Interactions between changing pCO2, N2 fixation, and Fe limitation in the marine unicellular cyanobacterium Crocosphaera. Limnol. Oceanogr. 53, 2472–2484 (2008).

  • 47.

    Gradoville, M. R., White, A. E. & Letelier, R. M. Physiological response of Crocosphaera watsonii to enhanced and fluctuating carbon dioxide conditions. PLoS ONE 9, e110660 (2014).

  • 48.

    Follett, C. L., Dutkiewicz, S., Karl, D. M., Inomura, K. & Follows, M. J. Seasonal resource conditions favor a summertime increase in North Pacific diatom-diazotroph associations. ISME J. 12, 1543–1557 (2018).

  • 49.

    Karl, D. M. & Lukas, R. The Hawaii Ocean Time-series (HOT) Program: Background, rationale and field implementation. Deep-Sea Res. 43, 129–156 (1996).

    • CAS
    • Google Scholar
  • 50.

    Shiozaki, T. et al. Linkage between dinitrogen fixation and primary production in the oligotrophic South Pacific Ocean. Glob. Biogeochem. Cycles 32, 1028–1044 (2018).

  • 51.

    Dekaezemacker, J. & Bonnet, S. Sensitivity of N2 fixation to combined nitrogen forms (NO3 and NH4+) in two strains of the marine diazotroph Crocosphaera watsonii (Cyanobacteria). Mar. Ecol. Prog. Ser. 438, 33–46 (2011).

  • 52.

    Knapp, A. N., Dekaezemacker, J., Bonnet, S., Sohm, J. A. & Capone, D. G. Sensitivity of Trichodesmium erythraeum and Crocosphaera watsonii abundance and N2 fixation rates to varying NO3 and PO43− concentrations in batch cultures. Aquat. Microb. Ecol. 66, 223–236 (2012).

    • Article
    • Google Scholar
  • 53.

    Knapp, A. N. The sensitivity of marine N2 fixation to dissolved inorganic nitrogen. Front Microbiol 3, 374 (2012).

  • 54.

    Inomura, K., Bragg, J., Riemann, L. & Follows, M. J. A quantitative model of nitrogen fixation in the presence of ammonium. PLoS ONE 13, e0208282 (2018).

  • 55.

    Stukel, M. R., Coles, V. J., Brooks, M. T. & Hood, R. R. Top-down, bottom-up and physical controls on diatom-diazotroph assemblage growth in the Amazon River plume. Biogeosciences 11, 3259–3278 (2014).

    • Article
    • Google Scholar
  • 56.

    Dutkiewicz, S. et al. Capturing optically important constituents and properties in a marine biogeochemical and ecosystem model. Biogeosciences 12, 4447–4481 (2015).

  • 57.

    Ackermann, M. A functional perspective on phenotypic heterogeneity in microorganisms. Nat. Rev. Microbiol 13, 497–508 (2015).

  • 58.

    Celiker, H. & Gore, J. Cellular cooperation: insights from microbes. Trends Cell Biol. 23, 9–15 (2013).

  • 59.

    Lin, S., Henze, S., Lundgren, P., Bergman, B. & Carpenter, E. J. Whole-cell immunolocalization of nitrogenase in marine diazotrophic cyanobacteria, Trichodesmium spp. Appl. Environ. Microbiol. 64, 3052–3058 (1998).

  • 60.

    Kupper, H., Ferimazova, N., Setlik, I. & Berman-Frank, I. Traffic lights in trichodesmium. Regulation of photosynthesis for nitrogen fixation studied by chlorophyll fluorescence kinetic microscopy. Plant Physiol. 135, 2120–2133 (2004).

  • 61.

    Eichner, M. J. et al. Chemical microenvironments and single-cell carbon and nitrogen uptake in field-collected colonies of Trichodesmium under different pCO2. ISME J. 11, 1305–1317 (2017).

  • 62.

    Ohki, K. & Taniuchi, Y. Detection of nitrogenase in individual cells of a natural population of Trichodesmium using immunocytochemical methods for fluorescent cells. J. Oceanogr. 65, 427–432 (2009).

  • 63.

    Sanchez-Baracaldo, P., Hayes, P. K. & Blank, C. E. Morphological and habitat evolution in the Cyanobacteria using a compartmentalization approach. Geobiology 3, 145–165 (2005).

  • 64.

    Hammerschmidt, K., Landan, G., Kümmel Tria, F. D. & Dagan, T. A chronology of multicellularity evolution in cyanobacteria. bioRxiv https://doi.org/10.1101/570788 (2019).

    • Article
    • Google Scholar
  • 65.

    Schirrmeister, B. E., Antonelli, A. & Bagheri, H. C. The origin of multicellularity in cyanobacteria. BMC Evolut. Biol. 11, 45 (2011).

    • Article
    • Google Scholar
  • 66.

    Kirk, D. L. A twelve-step program for evolving multicellularity and a division of labor. BioEssays 27, 299–310 (2005).

  • 67.

    Michod, R. E. Evolution of individuality during the transition from unicellular to multicellular life. Proc. Natl. Acad. Sci. USA 104, 8613–8618 (2007).

  • 68.

    Masuda, T., Furuya, K., Kodama, T., Takeda, S. & Harrison, P. J. Ammonium uptake and dinitrogen fixation by the unicellular nanocyanobacterium Crocosphaera watsoniiin nitrogen-limited continuous cultures. Limnol. Oceanogr. 58, 2029–2036 (2013).

  • 69.

    Guillard, R. R. L. & Ryther, J. H. Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervacea Cleve. Can. J. Microbiol. 8, 229–239 (1962).

  • 70.

    Guillard, R. R. L. Culture of phytoplankton for feeding marine invertebrates. In Culture of Marine Invertebrate Animals (eds Smith W.L. & Chanley M.H) 26–60 (Plenum Press, New York, USA, 1975).

  • 71.

    Provasoli, L., McLaughlin, J. J. A. & Droop, M. R. The development of artificial media for marine algae. Arcb. Mikrobiol. 25, 392–428 (1957).

  • 72.

    Shiozaki, T. et al. Why is Trichodesmium abundant in the Kuroshio? Biogeosciences 12, 6931–6943 (2015).

  • 73.

    Musat, N. et al. A single-cell view on the ecophysiology of anaerobic phototrophic bacteria. Proc. Natl. Acad. Sci. USA 105, 17861–17866 (2008).

  • 74.

    Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).

  • 75.

    Chavez, F. P., Messie, M. & Pennington, J. T. Marine primary production in relation to climate variability and change. Ann. Rev. Mar. Sci. 3, 227–260 (2011).

  • 76.

    Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. & Teller, E. Equation of state calculations by fast computing machines. J. Chem. Phys. 21, 1087–1092 (1953).

  • 77.

    Omta, A. W. et al. Extracting phytoplankton physiological traits from batch and chemostat culture data. Limnol. Oceanogr.: Methods 15, 453–466 (2017).

    • Article
    • Google Scholar
  • 78.

    Krishnamoorthy, K. Statistical distributions: an overview. In International Encyclopedia of Statistical Science (ed. Lovric M.) (Springer, Berlin, Heidelberg, 2011).

  • 79.

    Wilson, E. B. & Hilferty, M. M. The distribution of chi-square. Proc. Natl. Acad. Sci. USA 17, 684–688 (1931).

  • 80.

    Sohm, J. A., Edwards, B. R., Wilson, B. G. & Webb, E. A. Constitutive extracellular polysaccharide (EPS) production by specific isolates of Crocosphaera watsonii. Front Microbiol 2, 229 (2011).

  • 81.

    Benson, B. B. & Krause, D. The concentration and isotopic fraction of oxygen dissolved in freshwater and seawater in equilibrium with the atmosphere. Limnol. Oceanogr. 29, 620–632 (1984).

  • 82.

    Ågren, G. I. The C:°N:°P stoichiometry of autotrophs – theory and observations. Ecol. Lett. 7, 185–191 (2004).

    • Article
    • Google Scholar
  • 83.

    Pahlow, M. & Oschlies, A. Chain model of phytoplankton P, N and light colimitation. Mar. Ecol. Prog. Ser. 376, 69–83 (2009).

  • 84.

    Talmy, D., Blackford, J., Hardman-Mountford, N. J., Dumbrell, A. J. & Geider, R. J. An optimality model of photoadaptation in contrasting aquatic light regimes. Limnol. Oceanogr. 58, 1802–1818 (2013).

  • 85.

    Geider, R. J., MacIntyre, H. L. & Kana, T. M. A dynamic regulatory model of phytoplanktonic acclimation to light, nutrients, and temperature. Limnol. Oceanogr. 43, 679–694 (1998).

  • 86.

    Ghyoot, C., Flynn, K. J., Mitra, A., Lancelot, C. & Gypens, N. Modeling plankton mixotrophy: a mechanistic model consistent with the Shuter-type biochemical approach. Front. Ecol. Evol. 5, https://doi.org/10.3389/fevo.2017.00078 (2017).

  • 87.

    Cullen, J. J. On models of growth and photosynthesis in phytoplankton.Deep Sea Res. 37, 667–683 (1989).

    • Article
    • Google Scholar
  • 88.

    Letelier, R. M., Karl, D. M., Abbott, M. R. & Bidigare, R. R. Light driven seasonal patterns of chlorophyll and nitrate in the lower euphotic zone of the North Pacific Subtropical Gyre. Limnol. Oceanogr. 49, 508–519 (2004).


  • Source: Ecology - nature.com

    Effects of parental exposure to glyphosate-based herbicides on embryonic development and oxidative status: a long-term experiment in a bird model

    Urbanisation alters ecological interactions: Ant mutualists increase and specialist insect predators decrease on an urban gradient