in

Hidden treasure of the Gobi: understanding how water limits range use of khulan in the Mongolian Gobi

  • 1.

    Cloudsley-Thompson, J. L. Ecophysiology Of Desert Animals. Qatar University Science Journal 15, 225–229 (1995).

    • Google Scholar
  • 2.

    Cain, J. W., Krausman, P. R., Rosenstock, S. S. & Turner, J. C. Mechanisms of Thermoregulation and Water Balance in Desert Ungulates. Wildlife Society Bulletin 34, 570–581 (2006).

    • Article
    • Google Scholar
  • 3.

    Ostrowski, S., Williams, J. B., Mesochina, P. & Sauerwein, H. Physiological acclimation of a desert antelope, Arabian oryx (Oryx leucoryx), to long-term food and water restriction. J. Comp. Physiol. B. 176, 191–201 (2006).

  • 4.

    Cornélis, D. et al. Spatiotemporal dynamics of forage and water resources shape space use of West African savanna buffaloes. Journal of Mammalogy 92, 1287–1297 (2011).

    • Article
    • Google Scholar
  • 5.

    Redfern, J. V., Grant, C. C., Gaylard, A. & Getz, W. M. Surface water availability and the management of herbivore distributions in an African savanna ecosystem. Journal of Arid Environments 63, 406–424 (2005).

  • 6.

    Polansky, L., Kilian, W. & Wittemyer, G. Elucidating the significance of spatial memory on movement decisions by African savannah elephants using state-space models. Proceedings of The Royal Society B 282 (2015).

  • 7.

    Redfern, J. V., Grant, R., Giggs, H. & Getz, W. M. Surface-water constraints on herbivore foraging in the Kruger National Park, South Africa. Ecology 84, 2092–2107 (2003).

    • Article
    • Google Scholar
  • 8.

    Cain, J. W., Owen-Smith, N. & Macandza, V. A. The costs of drinking: comparative water dependency of sable antelope and zebra. Journal of Zoology 286, 58–67 (2012).

    • Article
    • Google Scholar
  • 9.

    Périquet, S. et al. Individual vigilance of African herbivores while drinking: the role of immediate predation risk and context. Animal Behaviour 79, 665–671 (2010).

    • Article
    • Google Scholar
  • 10.

    Sirot, E., Renaud, P.-C. & Pays, O. How competition and predation shape patterns of waterhole use by herbivores in arid ecosystems. Animal Behaviour 118, 19–26 (2016).

    • Article
    • Google Scholar
  • 11.

    Wakefield, S. & Attum, O. The effects of human visits on the use of a waterhole by endangered ungulates. Journal of Arid Environments 65, 668–672 (2006).

  • 12.

    Leeuw, J. D. et al. Distribution and diversity of wildlife in northern Kenya in relation to livestock and permanent water points. Biological Conservation 100, 297–306 (2001).

    • Article
    • Google Scholar
  • 13.

    Fynn, R. W. S. & Bonyongo, M. C. Functional conservation areas and the future of Africa’s wildlife. African Journal of Ecology 49, 175–188 (2011).

    • Article
    • Google Scholar
  • 14.

    James, C. D., Landsberg, J. & Morton, S. R. Provision of watering points in the Australian arid zone: a review of effects on biota. Journal of Arid Environments 41, 87–121 (1999).

  • 15.

    Dayaram, A. et al. Long term stability and infectivity of herpesviruses in water. Scientific reports 7, 46559, https://doi.org/10.1038/srep46559 (2017).

  • 16.

    Wiethoelter, A. K., Beltran-Alcrudo, D., Kock, R. & Mor, S. M. Global trends in infectious diseases at the wildlife-livestock interface. Proceedings of the National Academy of Sciences of the United States of America 112, 9662–9667 (2015).

  • 17.

    Mariki, S. B., Svarstad, H. & Benjaminsen, T. A. Elephants over the Cliff: Explaining Wildlife Killings in Tanzania. Land Use Policy 44, 19–30 (2015).

    • Article
    • Google Scholar
  • 18.

    Shrader, A. M., Kerley, G. I. H., Brown, J. S., Kotler, B. P. & Herberstein, M. Patch Use in Free-Ranging Goats: Does a Large Mammalian Herbivore Forage like Other Central Place Foragers? Ethology 118, 967–974 (2012).

    • Article
    • Google Scholar
  • 19.

    Rozen-Rechels, D. et al. Density-dependent, central-place foraging in a grazing herbivore: competition and tradeoffs in time allocation near water. Oikos 124, 1142–1150 (2015).

    • Article
    • Google Scholar
  • 20.

    Valls-Fox, H., De Garine-Wichatitsky, M., Fritz, H. & Chamaillé-Jammes, S. Resource depletion versus landscape complementation: habitat selection by a multiple central place forager. Landscape Ecology 33, 127–140 (2018).

    • Article
    • Google Scholar
  • 21.

    Durant, S. M. et al. Developing fencing policies for dryland ecosystems. Journal of Applied Ecology 52, 544–551 (2015).

    • Article
    • Google Scholar
  • 22.

    Ree, R. V. D., Smith, D. J. & Grilo, C. Handbook of Road Ecology. Wiley Blackwell, Hoboken, New Jersey, United States (2015).

  • 23.

    Linnell, J. D. C. et al. Border Security Fencing and Wildlife: The End of the Transboundary Paradigm in Eurasia? PLoS Biology 14, e1002483, https://doi.org/10.1371/journal.pbio.1002483 (2016).

  • 24.

    Bolger, D. T., Newmark, W. D., Morrison, T. A. & Doak, D. F. The need for integrative approaches to understand and conserve migratory ungulates. Ecolocical Letters 11, 63–77 (2008).

    • Google Scholar
  • 25.

    CMS. Central Asian Mammals Migration and Linear Infrastructure Atlas. CMS Technical Series Publication No. xx (2019).

  • 26.

    Kaczensky, P., Lkhagvasuren, B., Pereladova, O., Hemami, M.-R. & Bouskila, A. Equus hemionus. The IUCN Red List of Threatened Species 2015: e.T7951A45171204 (2015).

  • 27.

    Buuveibaatar, B. et al. Mongolian Gobi supports the world’s largest populations of khulan and goitered gazelles. Oryx 51, 639–647 (2017).

    • Article
    • Google Scholar
  • 28.

    Bannikov, A. G. The Asiatic wild ass: Neglected relative of the horse. Animals 13, 580–585 (1971).

    • Google Scholar
  • 29.

    Sneddon, J. C. & Argenzio, R. A. Feeding strategy and water homeostasis in equids: the role of the hind gut. Journal of Arid Environments 38, 493–509 (1998).

  • 30.

    Bannikov, A. G. The Asian Wild Ass. Lesnaya Promyshlennost, Moscow, Russia. [original in Russian, English translation by M. Proutkina, Zoological Society of San Diego] (1981).

  • 31.

    Kaczensky, P., Dresley, V., Vetter, D., Otgonbayar, H. & Walzer, C. Water use of Asiatic wild asses in the Mongolian Gobi. Exploration into the Biological Resources of Mongolia (Halle/Saale, Germany) 11, 291–298 (2010).

    • Google Scholar
  • 32.

    Zhang, Y. et al. Water Use Patterns of Sympatric Przewalski’s Horse a and Khulan: Interspecific Comparison Reveals Niche Differences. PLoS One 10, e0132094, https://doi.org/10.1371/journal.pone.0132094 (2015).

  • 33.

    Tucker, M. A. et al. Moving in the Anthropocene: Global reductions in terrestrial mammalian movements. Science 359, 466 (2018).

  • 34.

    Kaczensky, P. et al. Connectivity of the Asiatic wild ass population in the Mongolian Gobi. Biolocical Conservation 144, 920–929 (2011).

    • Article
    • Google Scholar
  • 35.

    Joly, K. et al. Who goes the farthest of them all? World’s longest terrestrial migrations and movements. Submitted (2019).

  • 36.

    Nandintsetseg, D., Kaczensky, P., Ganbaatar, O., Leimgruber, P. & Mueller, T. Spatiotemporal habitat dynamics of ungulates in unpredictable environments: The khulan (Equus hemionus) in the Mongolian Gobi desert as a case study. Biological Conservation 204, 313–321 (2016).

    • Article
    • Google Scholar
  • 37.

    Rao, M. P. et al. Dzuds, droughts, and livestock mortality in Mongolia. Environ. Research Letters 10, 074012, https://doi.org/10.1088/1748-9326/10/7/074012 (2015).

  • 38.

    Begzsuren, S., Ellis, J. E., Ojima, D. S., Coughenour, M. B. & Chuluun, T. Livestock responses to droughts and severe winter weather in the Gobi Three Beauty National Park, Mongolia. Journal of Arid Environments 59, 785–796 (2004).

  • 39.

    Kaczensky, P. et al. The danger of having all your eggs in one basket–winter crash of the re-introduced Przewalski’s horses in the Mongolian Gobi. PLoS One 6, e28057, https://doi.org/10.1371/journal.pone.0028057 (2011).

  • 40.

    Wingard, J., Zahler, P., Victurine, R., Bayasgalan, O. & Bayarbaatar, B. Guidelines for Addressing the Impact of Linear Infrastructure on Large Migratory Mammals in Central Asia. UNEP/CMS/COP11/Doc.23.3.2: Guidelines, UNEP/CMS Secretariat, Wildlife Conservation Society (2014).

  • 41.

    Karlstetter, M. & Mallon, D. Assessment of gaps and needs in migratory mammal conservation in Central Asia. Report prepared for the Convention on the Conservation of Migratory Species of Wild Animals (CMS) and the Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH. Financed by the Ecosystem Restoration in Central Asia (ERCA) component of the European Union Forest and Biodiversity Governance Including Environmental Monitoring Project (FLERMONECA). (2014).

  • 42.

    Krausman, P. R. Some Basic Principles of Habitat Use. In: Launchbaugh, K. L., Sanders, K. D. & Mosley, J. L., Eds., Grazing Behaviour of Livestock and Wildlife, Idaho Forest, Wildlife and Range Exp. Sta. Bull. No. 70, University of Idaho, Moscow, ID, 85–90 (1999).

  • 43.

    Buuveibaatar, B. et al. Human activities negatively impact distribution of ungulates in the Mongolian Gobi. Biological Conservation 203, 168–175 (2016).

    • Article
    • Google Scholar
  • 44.

    von Wehrden, H., Hanspach, J., Ronnenberg, K. & Wesche, K. Inter-annual rainfall variability in Central Asia – A contribution to the discussion on the importance of environmental stochasticity in drylands. Journal of Arid Environments 74, 1212–1215 (2010).

  • 45.

    Kaczensky, P. et al. Room to Roam? The Threat to Khulan (Wild Ass) from Human Intrusion. Mongolia Discussion Papers, East Asia and Pacifi c Environment and Social Development Department. Washington, D.C. World Bank. (2006).

  • 46.

    Batsaikhan, N. et al. Conserving the World’s Finest Grassland Amidst Ambitious National Development. Conservation Biology 28, 1736–1739 (2014).

  • 47.

    Berger, J., Buuveibaatar, B. & Mishra, C. Globalization of the cashmere market and the decline of large mammals in central Asia. Conservation Biology 27, 679–689 (2013).

  • 48.

    Feyisa, G. L., Meilby, H., Fensholt, R. & Proud, S. R. Automated Water Extraction Index: A new technique for surface water mapping using Landsat imagery. Remote Sensing of Environment 140, 23–35 (2014).

  • 49.

    Pettorelli, N. et al. The Normalized Difference Vegetation Index (NDVI): unforeseen successes in animal ecology. Climate Research 46, 15–27 (2011).

  • 50.

    Morgan, K. Thermoneutral zone and critical temperatures of horses. Journal of Thermal Biology 23, 59–61 (1998).

    • Article
    • Google Scholar
  • 51.

    Sainsbury, D. W. B. Donkey nutrition. Pages 58–75 In: Svendsen, E. D. (Ed). The Professional Handbook of the Donkey. The Donkey Sanctuary, Sovereign Printing Group, Devon, UK (1989).

  • 52.

    Nandintsetseg, B. & Shinoda, M. Assessment of drought frequency, duration, and severity and its impact on pasture production in Mongolia. National Hazards 66, 995–1008 (2013).

    • Article
    • Google Scholar
  • 53.

    Sternberg, T. Investigating the presumed causal links between drought and dzud in Mongolia. Natural Hazards 92, 27–43 (2018).

    • Article
    • Google Scholar
  • 54.

    Jonzén, N., Knudsen, E., Holt, R. D. & Sæther, B.-E. Uncertainty and predictability: the niches of migrants and nomads. Animal Migration. Milner-Gulland, E. J., Fryxell, J. M., & Sinclair, A. R. S. (Eds.), Oxford University Press, USA, 280 pages. ISBN: 9780199568994 (2011).

  • 55.

    Wang, M. Y., Ruckstuhl, K. E., Xu, W. X., Blank, D. & Yang, W. K. Human Activity Dampens the Benefits of Group Size on Vigilance in Khulan (Equus hemionus) in Western China. PLoS One 11, e0146725, https://doi.org/10.1371/journal.pone.0146725 (2016).

  • 56.

    Kaczensky, P. et al. Through the eye of a Gobi khulan – Application of camera collars for ecological research of far-ranging species in remote and highly variable ecosystems. Plos One 14, e0217772 (2019).

  • 57.

    Wingard, J. R. & Zahler, P. Silent Steppe: The Illegal Wildlife Trade Crisis. Mongolia Discussion Papers, East Asia and Pacifi c Environment and Social Development Department. Washington D.C.: World Bank (2006).

  • 58.

    Wingard, J. et al. Silent Steppe II: Mongolia’s Wildlife Trade Crisis, Ten Years Later. Zoological Society of London, London UK, Legal Atlas and IRIM, https://doi.org/10.13140/RG.2.2.18957.03049 (2018).

  • 59.

    Frey, S., Fisher, J. T., Burton, A. C., Volpe, J. P. & Rowcliffe, M. Investigating animal activity patterns and temporal niche partitioning using camera-trap data: challenges and opportunities. Remote Sensing in Ecology and Conservation 3, 123–132 (2017).

    • Article
    • Google Scholar
  • 60.

    Young, J. K., Olson, K. A., Reading, R. P., Amgalanbaatar, S. & Berger, J. Is Wildlife Going to the Dogs? Impacts of Feral and Free-roaming Dogs on Wildlife Populations. BioScience 61, 125–132 (2011).

    • Article
    • Google Scholar
  • 61.

    Dickinson, J. L. et al. The current state of citizen science as a tool for ecological research and public engagement. Frontiers in Ecology and the Environment 10, 291–297 (2012).

    • Article
    • Google Scholar
  • 62.

    Ito, T. Y., Lhagvasuren, B., Tsunekawa, A. & Shinoda, M. Habitat Fragmentation by Railways as a Barrier to Great Migrations of Ungulates in Mongolia. Pages 229–246 in Railway Ecology, https://doi.org/10.1007/978-3-319-57496-7_14 (2017).

  • 63.

    McGowen, P., Kroon, A., Fay, L. & Jones, D. Transportation Considerations for Wide-ranging Endangered Migratory ungulates in the Southern Gobi. In: Capacity building for Mongolian Ministry of Environment and Green Development in relation to biodiversity and conservation in the southern Gobi Desert: Final Report. The Nature Conservancy Mongolia Program. Ulaanbaatar, Mongolia. (2016).

  • 64.

    Fryxell, J. M., Greever, J. & Sinclair, A. R. E. Why are Migratory Ungulates So Abundant? The American Naturalist 131, 781–798 (1988).

    • Article
    • Google Scholar
  • 65.

    Stubbe, A., Stubbe, M., Batsaikhan, N. & Samjaa, R. Long term ecology of Asiatic wild ass (Equus h. hemionus Pallas) in Central Asia. Exploration into the Biological Resources of Mongolia (Halle/Saale) 12, 61–76 (2012).

    • Google Scholar
  • 66.

    Owen, H. J. F., Duncan, C., Pettorelli, N., Rocchini, D. & Fatoyinbo, T. Testing the water: detecting artificial water points using freely available satellite data and open source software. Remote Sensing in Ecology and Conservation 1, 61–72 (2015).

    • Article
    • Google Scholar
  • 67.

    Pitt, A. L. et al. The missing wetlands: using local ecological knowledge to find cryptic ecosystems. Biodiversity and Conservation 21, 51–63 (2011).

    • Article
    • Google Scholar
  • 68.

    von Wehrden, H. & Wesche, K. Plant communities of the southern Mongolian Gobi. Phytocoenologia 39, 331–376 (2009).

    • Article
    • Google Scholar
  • 69.

    Walzer, C. et al. Capture and anaesthesia of wild Mongolian equids – the Przewalski’s horse (Equus ferus przewalskii) and khulan (E. hemionus). Mongolian Journal of Biological Sciences 4, 19–30 (2007).

    • Google Scholar
  • 70.

    Walzer, C. Non-domestic Equids. Pages 719–728 In: West, G., Heard, D., Caulkett, N. (Eds.), Zoo Animal and Wildlife Immobilization and Anesthesia, 2nd Edition, Wiley Blackwell, ISBN: 978-0-8138-1183-3 (2014).

  • 71.

    Gerritsmann, H. et al. Arterial pH and Blood Lactate Levels of Anesthetized Mongolian Khulan (Equus hemionus hemionus) in the Mongolian Gobi Correlate with Induction Time. Journal of Wildlife Disease 52, 642–646 (2016).

  • 72.

    Calenge, C. Home Range Estimation in R: the adehabitatHR Package. Office national de la classe et de la faune sauvage, Affargis, France (2015).

  • 73.

    Burnik Šturm, M., Ganbaatar, O., Voigt, C. C. & Kaczensky, P. First field-based observations of δ2H and δ18O values of event-based precipitation, rivers and other water bodies in the Dzungarian Gobi, SW Mongolia. Isotopes in environmental and health studies 53, 157–171 (2017).

  • 74.

    Murtagh, F. & Legendre, P. Ward’s Hierarchical Agglomerative Clustering Method: Which Algorithms Implement Ward’s Criterion? Journal of Classification 31, 274–295 (2014).

  • 75.

    Schamm, K. et al. Global gridded precipitation over land: a description of the new GPCC First Guess Daily product. Earth System Science Data 6, 49–60 (2014).

  • 76.

    Didan, K., Munoz, A. B., Solano, R. & Huete, A. MODIS Vegetation Index User’s Guide (MOD13 Series). Vegetation Index and Phenology Lab, The University of Arizona College of Agriculture and Life Sciences, Tuscon, Arizona, USA (2015).

  • 77.

    Wood, S. N. Generalized Additive Models: an introduction with R. CRC Press, Taylor & Francis Group, US (2006).


  • Source: Ecology - nature.com

    Combined influence of soil moisture and atmospheric evaporative demand is important for accurately predicting US maize yields

    Meta-analysis of honey bee neurogenomic response links Deformed wing virus type A to precocious behavioral maturation