Dobson, A., Lafferty, K. D., Kuris, A. M., Hechinger, R. F. & Jetz, W. Homage to Linnaeus: how many parasites? How many hosts?. Proc. Natl. Acad. Sci. USA 105, 11482–11489 (2008).
Minchella, D. J. & Scott, M. E. Parasitism: a cryptic determinant of animal community structure. Trends Ecol. Evol. 8, 250–254 (1991).
Hudson, P. J., Rizzoli, A. P., Grenfell, B. T., Heesterbeek, J. A. P. & Dobson, A. P. Ecology of wildlife diseases. In The Ecology of Wildlife Diseases (eds Hudson, P. J. et al.) 1–5 (Oxford University Press, Oxford, 2002).
Hamilton, W. D. & Zuk, M. Heritable true fitness and bright birds: a role for parasites?. Science 80, 384–387 (1982).
Spencer, K. A., Buchanan, K. L., Leitner, S., Goldsmith, A. R. & Catchpole, C. K. Parasites affect song complexity and neural development in a songbird. Proc. R. Soc. Lond. B. 1576, 2037–2043 (2005).
Asghar, M. et al. Hidden costs of infection: chronic malaria accelerates telomere degradation and senescence in wild birds. Science 6220, 436–438 (2015).
van Riper, C., van Riper, S. G., Goff, M. L. & Laird, M. The epizootiology and ecological significance of malaria in Hawaiian land birds. Ecol. Monogr. 4, 327–344 (1986).
Atkinson, C., Woods, K., Dusek, R., Sileo, L. & Iko, W. Wildlife disease and conservation in Hawaii: Pathogenicity of avian malaria (Plasmodium relictum) in experimentally infected Iiwi (Vestiaria coccinea). Parasitology 111, S59–S69 (1995).
Ings, T. C. et al. Ecological networks: beyond food webs. J. Anim. Ecol. 78, 253–269 (2009).
Bellay, S. et al. Host-parasite networks: an integrative overview with tropical examples. In Ecological Networks in the Tropics: An Integrative Overview of Species Interactions from Some of the Most Species-Rich Habitats on Earth (eds Dáttilo, W. & Rico-Gray, V.) 127–140 (Springer, Berlin, 2018).
Valkiūnas, G. Avian Malaria Parasites and Other Haemosporidia (CRC Press, Boca Raton, 2005).
Ricklefs, R. E. et al. Species formation in avian malaria parasites. Proc. Natl Acad. Sci. USA 111, 14816–14821 (2014).
Hellgren, O., Pérez-Triz, J. & Bensch, S. A jack-of-all-trades and still a master of some: prevalence and host range in avian malaria and related blood parasites. Ecol. 90, 2840–2849 (2009).
Clark, N., Clegg, S. M. & Lima, M. R. A review of global diversity in avian haemosporidians (Plasmodium and Haemoproteus: Haemosporida): new insights from molecular data. Int. J. Parasitol. 44, 329–338 (2014).
Moens, M. A. J. & Pérez-Tris, J. Discovering potential sources of emerging pathogens: South America is a reservoir of generalist avian blood parasites. Int. J. Parasitol. 46, 41–49 (2016).
Lacorte, G. A. et al. Exploring the diversity and distribution of Neotropical avian malaria parasites: a molecular survey from Southeast Brazil. PLoS ONE 8, e57770 (2013).
Janzen, D. H. Herbivores and the number of tree species in tropical forests. Am. Nat. 104, 501–528 (1970).
Connell, J. H. On the role of natural enemies in preventing competitive exclusion in some marine animals and in forest trees. In Dynamics of Populations (eds den Boer, P. J. & Gradwell, G. R.) 298–312 (Centre for Agricultural Publishing and Documentation, Wageningen, 1971).
MacArthur, R. Fluctuations of animal populations and a measure of community stability. Ecol. 36, 533–536 (1955).
Rohde, K. Latitudinal gradients in species diversity: the search for the primary cause. Oikos 65, 514–527 (1992).
Willig, M. R., Kaufman, D. M. & Stevens, R. D. Latitudinal gradients of biodiversity: Pattern, process, scale, and synthesis. Annu. Rev. Ecol. Evol. Syst. 34, 273–309 (2003).
Svensson-Coelho, M., Ellis, V. A., Loiselle, B. A., Blake, J. G. & Ricklefs, R. E. Reciprocal specialization in multihost malaria parasite communities of birds: a temperate-tropical comparison. Am. Nat. 184, 624–635 (2014).
Morris, R. J., Gripenberg, S., Lewis, O. T. & Roslin, T. Antagonistic interaction networks are structured independently of latitude and host guild. Ecol. Lett. 17, 340–349 (2014).
Blüthgen, N., Menzel, F. & Blüthgen, N. Measuring specialization in species interaction networks. BMC Ecol. 6, 1–12 (2006).
Carstensen, D. W., Sabatino, M., Trøjelsgaard, K. & Morellato, L. P. C. Beta diversity of plant-pollinator networks and the spatial turnover of pairwise interactions. PLoS ONE 9, e112903 (2014).
Poulin, R. Network analysis shining light on parasite ecology and diversity. Trends Parasitol. 26, 492–498 (2010).
Simanonok, M. P. & Burkle, L. A. Partitioning interaction turnover among alpine pollination networks: spatial, temporal, and environmental patterns. Ecosphere 5, art149 (2014).
Poulin, R., Krasnov, B. R., Pilosof, S. & Thieltges, D. W. Phylogeny determines the role of helminth parasites in intertidal food webs. J. Anim. Ecol. 82, 1265–1275 (2013).
Robinson, M. L. & Strauss, S. Generalists are more specialized in low-resource habitats, increasing stability of ecological network structure. Proc. Natl Acad. Sci. USA 117, 2043–2048 (2020).
Dallas, T. & Cornelius, E. Co-extinction in a host-parasite network : identifying key hosts for network stability. Sci. Rep. 5, 1–10 (2015).
Mccurdy, D. G., Shutler, D., Mullie, A. & Forbes, M. R. Sex-biased parasitism of avian hosts: relations to blood parasite taxon and mating system. Oikos 82, 303–312 (1998).
Fecchio, A., Lima, M. R., Silveira, P., Braga, ÉM. & Marini, M. Â. High prevalence of blood parasites in social birds from a neotropical savanna in Brazil. Emu. 111, 132–138 (2011).
Laurance, S. G. W. et al. Habitat fragmentation and ecological traits influence the prevalence of avian blood parasites in a tropical rainforest landscape. PLoS ONE 8, e76227 (2013).
Lutz, H. L. et al. Parasite prevalence corresponds to host life history in a diverse assemblage of afrotropical birds and haemosporidian parasites. PLoS ONE 10, e0121254 (2015).
González, A. D. et al. Mixed species flock, nest height, and elevation partially explain avian haemoparasite prevalence in Colombia. PLoS ONE 9, e100695 (2014).
Matthews, A. E. et al. Avian haemosporidian prevalence and its relationship to host life histories in eastern Tennessee. J. Ornithol. 157, 533–548 (2016).
Pinheiro, R. B. P. et al. Trade-offs and resource breadth processes as drivers of performance and specificity in a host–parasite system: a new integrative hypothesis. Int. J. Parasitol. 2, 115–121 (2016).
Mello, A. A. R. et al. The modularity of seed dispersal: differences in structure and robustness between bat– and bird–fruit networks. Oecologia 167, 131–140 (2015).
Thompson, J. N. The evolution of species interactions. Science 284, 2116–2118 (1999).
Fortuna, M. A. et al. Nestedness vs modularity in ecological networks: two side of the same coin?. J. Anim. Ecol. 79, 811–817 (2010).
Bellay, S., Lima, D. P., Takemoto, R. M. & Luque, J. L. A host-endoparasite network of Neotropical marine fish: are there organizational patterns?. Parasitology 138, 1945–1952 (2011).
Krasnov, B. R. et al. Phylogenetic signal in module composition and species connectivity in compartmentalized host-parasite networks. Am. Nat. 179, 501–511 (2012).
Bellay, S. et al. Developmental stage of parasites influences the structure of fish-parasite networks. PLoS ONE 8, e75710 (2013).
Thompson, J. N. The Geographic Mosaic of Coevolution (University of Chicago Press, Chicago, 2005).
Michelan, T. S., Thomaz, S. M., Mormul, R. P. & Carvalho, P. Effects of an exotic invasive macrophyte (tropical signalgrass) on native plant community composition, species richness and functional diversity. Freshw. Biol. 55, 1315–1326 (2010).
Krasnov, B. R. et al. Assembly rules of ectoparasite communities across scales: combining patterns of abiotic factors, host composition, geographic space, phylogeny and traits. Ecography 38, 184–197 (2015).
LaPointe, D. A., Atkinson, C. T. & Samuel, M. D. Ecology and conservation biology of avian malaria. Ann. N. Y. Acad. Sci. 1249, 211–226 (2012).
CaraDonna, P. et al. Interaction rewiring and the rapid turnover of plant–pollinator networks. Ecol. Let. 20, 385–394 (2017).
Fallon, S. M., Rickfles, R. E., Latta, S. C. & Bermingham, E. Temporal stability of insular avian malarial parasite communities. Proc. R. Soc. Lond. B. 271, 493–500 (2004).
Ferreira Junior, F. C. et al. Habitat modification and seasonality influence avian haemosporidian parasite distributions in southeastern Brazil. PLoS ONE 12, e0178791 (2017).
Knowles, S. C. L., Palinauskas, V. & Sheldon, B. C. Chronic malaria infections increase family inequalities and reduce parental fitness: experimental evidence from a wild bird population. J. Evol. Biol. 23, 557–569 (2010).
Poisot, T., Stouffer, D. B. & Gravel, D. Beyond species: why ecological interaction networks vary through space and time. Oikos 124, 243–251 (2015).
Castilheiro, W., Santos-filho, M. & Oliveira, R. F. Beta diversity of birds (Passeriformes, Linnaeus, 1758) in Southern Amazon. Ciências Anim. Bras. 18, 1–18 (2017).
Yen, J. D. L., Fleishman, E., Fogarty, F. & Dobkin, D. S. Relating beta diversity of birds and butterflies in the Great Basin to spatial resolution, environmental variables and trait-based groups. Global Ecol. Biogeogr. 28, 328–340 (2019).
Woodward, G. et al. Body size in ecological networks. Trends Ecol. Evol. 7, 402–409 (2005).
Campião, K. M., Ribas, A. C. A., Morais, D. H., Silva, R. J. & Tavares, L. E. R. How many parasites species a frog might have? Determinants of parasite diversity in South American anurans. PLoS ONE 10, e0140577 (2015).
Lima, D. P., Giacomini, H. C., Takemoto, R. M., Agostinho, A. A. & Bini, L. M. Patterns of interactions of a large fish-parasite network in a tropical floodplain. J. Anim. Ecol. 81, 905–913 (2012).
Brito, S. V. et al. Phylogeny and micro-habitats utilized by lizards determine the composition of their endoparasites in the semiarid Caatinga of Northeast Brazil. Parasitol. Res. 11, 3963–3972 (2014).
Graham, S. P., Hassan, H. K., Burket-Cadena, N. D., Guyer, C. & Unnasch, T. R. Nestedness of ectoparasite-vertebrate host networks. PLoS ONE 18, e7873 (2009).
Thébault, E. & Fontaine, C. Stability of ecological communities and the architecture of mutualistic and trophic networks. Science 329, 853–856 (2010).
Poisot, T., Canard, E., Mouquet, N. & Hochberg, M. E. A comparative study of ecological specialization estimators. Methods Ecol. Evol. 3, 537–544 (2012).
Wilkinson, L. C., Handel, C. M., Van Hemert, C., Loiseau, C. & Sehgal, R. N. M. Avian malaria in a boreal resident species: long-term temporal variability, and increased prevalence in birds with avian keratin disorder. Int. J. Parasitol. 46, 281–290 (2016).
Møller, A. P., Merino, S., Brown, C. R. & Robertson, R. J. Immune defense and host sociality: a comparative study of swallows and martins. Am. Nat. 158, 136–145 (2001).
Medeiros, M. C., Hamer, G. L. & Ricklefs, R. E. Host compatibility rather than vector-host-encounter rate determines the host range of avian Plasmodium parasites. Proc. R. Soc. Lond. B. 280, 20122947 (2013).
Clark, N. & Clegg, S. M. Integrating phylogenetic and ecological distances reveals new insights into parasite host specificity. Mol. Ecol. 26, 3074–3086 (2017).
Costa, F. V. et al. Few ant species play a central role linking different plant resources in a network in rupestrian grasslands. PLoS ONE 12, e0167161 (2016).
Fagundes, R. et al. Differences among ant species in plant protection are related to production of extrafloral nectar and degree of leaf herbivory. Biol. J. Linn. Soc. 122, 71–83 (2016).
Alvares, C. A., Stape, J. L., Sentelhas, P. C., Gonçalves, J. L. M. & Sparovek, G. Köppen’s climate classification map for Brazil. Meteorol. Z. 226, 711–728 (2013).
Rodrigues, R. A. et al. Using a multistate occupancy approach to determine molecular diagnostic accuracy and factors afecting avian haemosporidian infections. Sci. Rep. 10, 8480 (2020).
Sambrook, J. & Russell, D. W. Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory Press, New York, 2001).
Fallon, A. S. M., Ricklefs, R. E., Swanson, B. L. & Bermingham, E. Detecting avian malaria: an improved polymerase chain reaction diagnostic. J. Parasitol. 89, 1044–1047 (2003).
Sanguinetti, C. J., Neto, E. D. & Simpson, A. J. G. Rapid silver staining and recovery of PCR products separated on polyacrylamide gels. Biotechniques 17, 915–919 (1994).
Hellgren, O., Waldenström, J. & Bensch, S. A new PCR assay for simultaneous studies of Leucocytozoon, Plasmodium, and Haemoproteus from avian blood. J. Parasitol. 90, 797–802 (2004).
Ewing, B., Hillier, L., Wendl, M. C. & Green, P. Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res. 3, 175–185 (1998).
Bensch, S., Hellgren, O. & Pérez-Tris, J. MalAvi: a public database of malaria parasites and related haemosporidians in avian hosts based on mitochondrial cytochrome b lineages. Mol. Ecol. Resour. 9, 1353–1358 (2009).
Baselga, A. Partitioning the turnover and nestedness components of beta diversity. Glob. Ecol. Biogeogr. 19, 134–143 (2010).
Whittaker, R. H. Vegetation of the Siskiyou Mountains, Oregon and California. Ecol. Monogr. 30, 279–338 (1960).
Baselga, A. & Orme, C. D. L. betapart: an R package for the study of beta diversity. Methods Ecol. Evol. 3, 808–812 (2012).
R Core Team. R: A Language and Environment for Statistical Computing. https://www.R-project.org/ (2017).
Fründ, J., McCann, K. S. & Williams, N. M. Sampling bias is a challenge for quantifying specialization and network structure: lessons from a quantitative niche model. Oikos 125, 502–513 (2016).
Dormann, C. F. & Strauss, R. A method for detecting modules in quantitative bipartite networks. Methods Ecol. Evol. 5, 90–98 (2014).
Oksanen, J. F. et al. Vegan: Community. Ecology Package. https://cran.r-project.org/package=vegan (2016).
Batagelj, V. & Mrvar, A. Pajek–a program for large network analysis. Connections 21, 47–57 (1998).
Source: Ecology - nature.com