in

Hummingbird-sized dinosaur from the Cretaceous period of Myanmar

  • 1.

    Xing, L. et al. Mummified precocial bird wings in mid-Cretaceous Burmese amber. Nat. Commun. 7, 12089 (2016).

  • 2.

    Xing, L. et al. A feathered dinosaur tail with primitive plumage trapped in mid-Cretaceous amber. Curr. Biol. 26, 3352–3360 (2016).

  • 3.

    Daza, J. D. et al. An enigmatic miniaturized and attenuate whole lizard from the Mid-Cretaceous amber of Myanmar. Breviora 563, 1–18 (2018).

    • Google Scholar
  • 4.

    Xing, L.-D. et al. A mid-Cretaceous enantiornithine (Aves) hatchling preserved in Burmese amber with unusual plumage. Gondwana Res. 49, 264–277 (2017).

    • ADS
    • Google Scholar
  • 5.

    Xing, L.-D. et al. A flattened enantiornithine in mid-Cretaceous Burmese amber: morphology and preservation. Sci. Bull. (Beijing) 63, 235–243 (2018).

    • Google Scholar
  • 6.

    Xing, L. et al. A fully feathered enantiornithine foot and wing fragment preserved in mid-Cretaceous Burmese amber. Sci. Rep. 9, 927 (2019).

  • 7.

    Xing, L., McKellar, R. C., O’Connor, J. K., Niu, K. & Mai, H. A mid-Cretaceous enantiornithine foot and tail feather preserved in Burmese amber. Sci. Rep. 9, 15513 (2019).

  • 8.

    Xing, L. et al. A new enantiornithine bird with unusual pedal proportions found in amber. Curr. Biol. 29, 2396–2401.e2 (2019).

  • 9.

    Hanken, J. & Wake, D. B. Miniaturization of body size: organismal consequences and evolutionary significance. Annu. Rev. Ecol. Syst. 24, 501–519 (1993).

    • Google Scholar
  • 10.

    Westerweel, J. et al. Burma Terrane part of the Trans-Tethyan Arc during collision with India according to palaeomagnetic data. Nat. Geosci. 12, 863–868 (2019).

  • 11.

    Shi, G. et al. Age constraint on Burmese amber based on U-Pb dating of zircons. Cretac. Res. 37, 155–163 (2012).

    • Google Scholar
  • 12.

    Field, D. J. et al. Complete Ichthyornis skull illuminates mosaic assembly of the avian head. Nature 557, 96–100 (2018).

  • 13.

    Smith, R. D. A. & Ross, A. Amberground pholadid bivalve borings and inclusions in Burmese amber: implications for proximity of resin-producing forests to brackish waters, and the age of the amber. Earth Environ. Sci. Trans. R. Soc. Edinb. 107, 239–247 (2018).

    • Google Scholar
  • 14.

    Lovette, I. J. & Fitzpatrick, J. W. The Handbook if Bird Biology 3rd edn (Princeton Univ. Press, 2004).

  • 15.

    Dalsgaard, B. et al. Trait evolution, resource specialization and vulnerability to plant extinctions among Antillean hummingbirds. Proc. R. Soc. Lond. B 285, 20172754 (2018).

    • Google Scholar
  • 16.

    Glaw, F., Köhler, J., Townsend, T. M. & Vences, M. Rivaling the world’s smallest reptiles: discovery of miniaturized and microendemic new species of leaf chameleons (Brookesia) from northern Madagascar. PLoS ONE 7, e31314 (2012).

  • 17.

    Yeh, J. The effect of miniaturized body size on skeletal morphology in frogs. Evolution 56, 628–641 (2002).

  • 18.

    Griffith, H. Miniaturization and elongation in Eumeces (Sauria: Scincidae). Copeia 1990, 751–758 (1990).

    • Google Scholar
  • 19.

    Chiappe, L. M., Ji, S., Ji, Q. & Norell, M. A. Anatomy and systematics of the Confuciusornithidae (Theropoda: Aves) from the Late Mesozoic of northeastern China. Bull. Am. Mus. Nat. Hist. 242, 1–89 (1999).

    • Google Scholar
  • 20.

    Elzanowski, A. Embryonic bird skeletons from the Late Cretaceous of Mongolia. Palaeontologica Polonica 42, 147–179 (1981).

    • Google Scholar
  • 21.

    Jollie, M. T. The head skeleton of the chicken and remarks on the anatomy of this region in other birds. J. Morphol. 100, 389–436 (1957).

    • Google Scholar
  • 22.

    Edinger, T. Über Knöcherne Scleralringe (Fisher, 1929).

  • 23.

    Schmitz, L. Quantitative estimates of visual performance features in fossil birds. J. Morphol. 270, 759–773 (2009).

  • 24.

    Schmitz, L. & Motani, R. Morphological differences between the eyeballs of nocturnal and diurnal amniotes revisited from optical perspectives of visual environments. Vision Res. 50, 936–946 (2010).

  • 25.

    Schmitz, L. & Motani, R. Nocturnality in dinosaurs inferred from scleral ring and orbit morphology. Science 332, 705–708 (2011).

  • 26.

    Rauhut, O. W. M. The Interrelationships and Evolution of Basal Theropod Dnosaurs (Special Papers in Palaeontology 69) (The Palaeontological Association, London, 2003).

  • 27.

    O’Connor, J. & Chiappe, L. M. A revision of enantiornithine (Aves: Ornithothoraces) skull morphology. J. Syst. Palaeontology 9, 135–157 (2011).

    • Google Scholar
  • 28.

    Xu, X. & Norell, M. A. A new troodontid dinosaur from China with avian-like sleeping posture. Nature 431, 838–841 (2004).

  • 29.

    O’Connor, J. K. The trophic habits of early birds. Palaeogeogr. Palaeoclimatol. Palaeoecol. 513, 178–195 (2019).

    • ADS
    • Google Scholar
  • 30.

    Rittmeyer, E. N., Allison, A., Gründler, M. C., Thompson, D. K. & Austin, C. C. Ecological guild evolution and the discovery of the world’s smallest vertebrate. PLoS ONE 7, e29797 (2012).

  • 31.

    Hu, H. et al. Evolution of the vomer and its implications for cranial kinesis in Paraves. Proc. Natl Acad. Sci. USA 116, 19571–19578 (2019).

  • 32.

    Bout, R. G. & Zweers, G. A. The role of cranial kinesis in birds. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 131, 197–205 (2001).

  • 33.

    Rayfield, E. J. Aspects of comparative cranial mechanics in the theropod dinosaurs Coelophysis, Allosaurus and Tyrannosaurus. Zool. J. Linn. Soc. 144, 309–316 (2005).

    • Google Scholar
  • 34.

    Degrange, F. J., Tambussi, C. P., Taglioretti, M. L., Dondas, A. & Scaglia, F. A new Mesembriornithinae (Aves, Phorusrhacidae) provides new insights into the phylogeny and sensory capabilities of terror birds. J. Vertebr. Paleontol. 35, e912656 (2015).

    • Google Scholar
  • 35.

    Holliday, C. M. & Witmer, L. M. Archosaur adductor chamber evolution: integration of musculoskeletal and topological criteria in jaw muscle homology. J. Morphol. 268, 457–484 (2007).

  • 36.

    Witmer, L. M. The evolution of the antorbital cavity of archosaurs: a study in soft-tissue reconstruction in the fossil record with an analysis of the function of pneumaticity. J. Vertebr. Paleontol. 17, 1–73 (1997).

    • Google Scholar
  • 37.

    O’Connor, J. K., Chiappe, L. M. & Bell, A. in Living Dinosaurs: the Evolutionary History of Birds (eds Dyke, G. D. & Kaiser, G.) 39–114 (John Wiley & Sons, 2011).

  • 38.

    Bailleul, A. M., Li, Z., O’Connor, J. & Zhou, Z. Origin of the avian predentary and evidence of a unique form of cranial kinesis in Cretaceous ornithuromorphs. Proc. Natl Acad. Sci. USA 116, 24696–24706 (2019).

  • 39.

    Zhou, Z. & Zhang, F. A long-tailed, seed-eating bird from the Early Cretaceous of China. Nature 418, 405–409 (2002).

  • 40.

    Xu, X. Mosaic evolution in birds: brain vs. feeding apparatus. Sci. Bull. (Beijing) 63, 812–813 (2018).

    • Google Scholar
  • 41.

    Goloboff, P. A., Carpenter, J. M., Arias, J. S. & Esquivel, D. R. M. Weighting against homoplasy improves phylogenetic analysis of morphological data sets. Cladistics 24, 758–773 (2008).

    • Google Scholar
  • 42.

    Xing, L.-D., McKellar, R. C. & O’Connor, J. An unusually large bird wing in mid-Cretaceous Burmese amber. Cretaceous Res. 110, 104412 (2020).

    • Google Scholar
  • 43.

    Chen, R.-C. et al. PITRE: software for phase-sensitive X-ray image processing and tomography reconstruction J. Synchrotron Radiat. 19, 836–845 (2012).

  • 44.

    Symonds, M. R. E. & Blomberg, S. P. in Modern Phylogenetic Comparative Methods and their Application in Evolutionary Biology (ed. Garamszegi, L. Z.) 105–130 (Springer, 2014).

  • 45.

    Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 309–316 (2012).

    • Google Scholar
  • 46.

    Jetz, W. et al. Distribution and conservation of global evolutionary distinctness in birds. Curr. Biol. 24, 919–930 (2014).


  • Source: Ecology - nature.com

    How plants protect themselves from sun damage

    Lighting recycling in Australia: A complete guide to recycling lighting waste