in

Hydrochar did not reduce rice paddy NH3 volatilization compared to pyrochar in a soil column experiment

  • 1.

    Zhang, Y. et al. Concentrations and chemical compositions of fine particles (PM2.5) during haze and non-haze days in Beijing. Atmos. Res. 174–175, 62–69 (2016).

    Article  CAS  Google Scholar 

  • 2.

    Li, Y. et al. Observations of ammonia, nitric acid, and fine particles in a rural gas production region. Atmos. Environ. 83, 80–89 (2014).

    ADS  CAS  Article  Google Scholar 

  • 3.

    Singh, J., Kunhikrishnan, A., Bolan, N. S. & Saggar, S. Impact of urease inhibitor on ammonia and nitrous oxide emissions from temperate pasture soil cores receiving urea fertilizer and cattle urine. Sci. Total Environ. 465, 56–63 (2013).

    ADS  CAS  Article  Google Scholar 

  • 4.

    Sha, Z., Li, Q., Lv, T., Misselbrook, T. & Liu, X. Response of ammonia volatilization to biochar addition: A meta-analysis. Sci. Total Environ. 655, 1387–1396 (2019).

    ADS  CAS  Article  Google Scholar 

  • 5.

    Wang, H. et al. Ammonia emissions from paddy fields are underestimated in China. Environ. Pollut. 235, 482–488 (2018).

    CAS  Article  Google Scholar 

  • 6.

    Paustian, K. et al. Climate-smart soils. Nature 532, 49–57 (2016).

    ADS  CAS  Article  Google Scholar 

  • 7.

    Huang, Y. et al. Methane and nitrous oxide flux after biochar application in subtropical acidic paddy soils under tobacco-rice rotation. Sci. Rep. 9, 17277 (2019).

    ADS  Article  CAS  Google Scholar 

  • 8.

    Sheng, Y. & Zhu, L. Biochar alters microbial community and carbon sequestration potential across different soil pH. Sci. Total Environ. 622–623, 1391–1399 (2018).

    ADS  Article  CAS  Google Scholar 

  • 9.

    Liu, Q. et al. How does biochar influence soil N cycle? A meta-analysis. Plant Soil 426, 211–225 (2018).

    CAS  Article  Google Scholar 

  • 10.

    Huang, M., Fan, L., Chen, J., Jiang, L. & Zou, Y. Continuous applications of biochar to rice: Effects on nitrogen uptake and utilization. Sci. Rep. 8, 11461 (2018).

    ADS  Article  CAS  Google Scholar 

  • 11.

    Feng, Y. et al. Biochar applied at an appropriate rate can avoid increasing NH3 volatilization dramatically in rice paddy soil. Chemosphere 168, 1277–1284 (2016).

    ADS  Article  CAS  Google Scholar 

  • 12.

    Sun, H., Zhang, H., Min, J., Feng, Y. & Shi, W. Controlled-release fertilizer, floating duckweed, and biochar affect ammonia volatilization and nitrous oxide emission from rice paddy fields irrigated with nitrogen-rich wastewater. Paddy Water Environ. 14, 1–7 (2015).

    Google Scholar 

  • 13.

    Sun, H., Lu, H., Chu, L., Shao, H. & Shi, W. Biochar applied with appropriate rates can reduce N leaching, keep N retention and not increase NH3 volatilization in a coastal saline soil. Sci. Total Environ. 575, 820–825 (2017).

    ADS  CAS  Article  Google Scholar 

  • 14.

    Sun, H. et al. Responses of ammonia volatilization from rice paddy soil to application of wood vinegar alone or combined with biochar. Chemosphere 242, 125247 (2020).

    ADS  CAS  Article  Google Scholar 

  • 15.

    Nizamuddin, S. et al. Upgradation of chemical, fuel, thermal, and structural properties of rice husk through microwave-assisted hydrothermal carbonization. Environ. Sci Pollut. R. 25, 17529–17539 (2018).

    CAS  Article  Google Scholar 

  • 16.

    Gronwald, M., Vos, C., Helfrich, M. & Don, A. Stability of pyrochar and hydrochar in agricultural soil—A new field incubation method. Geoderma 284, 85–92 (2016).

    ADS  CAS  Article  Google Scholar 

  • 17.

    Liu, Y. et al. Effect of pyrochar and hydrochar on water evaporation in clayey soil under greenhouse cultivation. Environ. Res. Public Health 16, 2580 (2019).

    CAS  Article  Google Scholar 

  • 18.

    Malghani, S., Gleixner, G. & Trumbore, S. E. Chars produced by slow pyrolysis and hydrothermal carbonization vary in carbon sequestration potential and greenhouse gases emissions. Soil Biol. Biochem. 62, 137–146 (2013).

    CAS  Article  Google Scholar 

  • 19.

    Han, L. et al. New evidence for high sorption capacity of hydrochar for hydrophobic organic pollutants. Environ. Sci. Technol. 50, 13274–13282 (2016).

    ADS  CAS  Article  Google Scholar 

  • 20.

    Hua, Y. et al. Microbial aging of hydrochar as a way to increase cadmium ion adsorption capacity: Process and mechanism. Bioresour. Technol. 300, 122708 (2020).

    CAS  Article  Google Scholar 

  • 21.

    Schimmelpfennig, S., Müller, C., Grünhage, L., Koch, C. & Kammann, C. Biochar, hydrochar and uncarbonized feedstock application to permanent grassland—Effects on greenhouse gas emissions and plant growth. Agric. Ecosyst. Environ. 191, 39–52 (2014).

    CAS  Article  Google Scholar 

  • 22.

    Elaigwu, S. E. & Greenway, G. M. Microwave-assisted and conventional hydrothermal carbonization of lignocellulosic waste material: Comparison of the chemical and structural properties of the hydrochars. J. Anal. Appl. Pyrol. 118, 1–8 (2016).

    CAS  Article  Google Scholar 

  • 23.

    Huang, R. & Tang, Y. Speciation dynamics of phosphorus during (hydro)thermal treatments of sewage sludge. Environ. Sci. Technol. 49, 14466–14474 (2015).

    ADS  CAS  Article  Google Scholar 

  • 24.

    Donar, Y. O., Çağlar, E. & Sınağ, A. Preparation and characterization of agricultural waste biomass based hydrochars. Fuel 183, 366–372 (2016).

    CAS  Article  Google Scholar 

  • 25.

    Mumme, J. et al. Hydrothermal carbonization of digestate in the presence of zeolite: Process efficiency and composite properties. ACS Sustain. Chem. Eng. 3, 2967–2974 (2015).

    CAS  Article  Google Scholar 

  • 26.

    Bargmann, I., Rillig, M., Kruse, A., Greef, J. & Kücke, M. Effects of hydrochar application on the dynamics of soluble nitrogen in soils and on plant availability. J. Plant. Nutr. Soil. Sci. 177, 48–58 (2014).

    Article  CAS  Google Scholar 

  • 27.

    Chu, Q. et al. Microalgae-derived hydrochar application on rice paddy soil: Higher rice yield but increased gaseous nitrogen loss. Sci. Total Environ. 717, 137127 (2020).

    ADS  CAS  Article  Google Scholar 

  • 28.

    Chu, Q. et al. Sewage sludge-derived hydrochar that inhibits ammonia volatilization, improves soil nitrogen retention and rice nitrogen utilization. Chemosphere 245, 125558 (2020).

    ADS  CAS  Article  Google Scholar 

  • 29.

    Xue, Y. et al. Hydrogen peroxide modification enhances the ability of biochar (hydrochar) produced from hydrothermal carbonization of peanut hull to remove aqueous heavy metals: Batch and column tests. Chem. Eng. J. 200–202, 673–680 (2012).

    Article  CAS  Google Scholar 

  • 30.

    Yu, S. et al. Biowaste to treasure: Application of microbial-aged hydrochar in rice paddy could improve nitrogen use efficiency and rice grain free amino acids. J. Clean Prod. 240, 118180 (2019).

    CAS  Article  Google Scholar 

  • 31.

    Ti, C., Xia, L., Chang, S. X. & Yan, X. Potential for mitigating global agricultural ammonia emission: A meta-analysis. Environ. Pollut. 245, 141–148 (2019).

    CAS  Article  Google Scholar 

  • 32.

    Chu, Q. et al. Bentonite hydrochar composites mitigate ammonia volatilization from paddy soil and improve nitrogen use efficiency. Sci. Total Environ. 718, 137301 (2020).

    ADS  CAS  Article  Google Scholar 

  • 33.

    Luo, S. et al. Long-term biochar application influences soil microbial community and its potential roles in semiarid farmland. Appl. Soil Ecol. 117–118, 10–15 (2017).

    Article  Google Scholar 

  • 34.

    Zhu, X., Chen, B., Zhu, L. & Xing, B. Effects and mechanisms of biochar-microbe interactions in soil improvement and pollution remediation: A review. Environ. Pollut. 227, 98–115 (2017).

    CAS  Article  Google Scholar 

  • 35.

    Rutherford, D. W., Wershaw, R. L., Rostad, C. E. & Kelly, C. N. Effect of formation conditions on biochars: Compositional and structural properties of cellulose, lignin, and pine biochars. Biomass Bioenerg. 46, 693–701 (2012).

    CAS  Article  Google Scholar 

  • 36.

    Kastner, J. R., Miller, J. & Das, K. C. Pyrolysis conditions and ozone oxidation effects on ammonia adsorption in biomass generated chars. J. Hazard. Mater. 164, 1420–1427 (2009).

    CAS  Article  Google Scholar 

  • 37.

    Zhao, L., Cao, X., Mašek, O. & Zimmerman, A. Heterogeneity of biochar properties as a function of feedstock sources and production temperatures. J. Hazard. Mater. 256–257, 1–9 (2013).

    PubMed  PubMed Central  Google Scholar 

  • 38.

    Lehmann, J. A handful of carbon. Nature 447, 143–144 (2007).

    ADS  CAS  Article  Google Scholar 

  • 39.

    de la Rosa, J. M., Rosado, M., Paneque, M., Miller, A. Z. & Knicker, H. Effects of aging under field conditions on biochar structure and composition: Implications for biochar stability in soils. Sci. Total Environ. 613–614, 969–976 (2018).

    Article  CAS  Google Scholar 

  • 40.

    Huang, Z. et al. Effect of aging on surface chemistry of rice husk-derived biochar. Environ. Prog. Sustain. Energy. 37, 410–417 (2017).

    Article  CAS  Google Scholar 

  • 41.

    Mia, S., Dijkstra, F. A. & Singh, B. Aging induced changes in biochar’s functionality and adsorption behavior for phosphate and ammonium. Environ. Sci. Technol. 51, 8359–8367 (2017).

    ADS  CAS  Article  Google Scholar 

  • 42.

    Zhou, B. et al. Impact of hydrochar on rice paddy CH4 and N2O emissions: A comparative study with pyrochar. Chemosphere 204, 474–482 (2018).

    ADS  CAS  Article  Google Scholar 

  • 43.

    Sun, X., Zhong, T., Zhang, L., Zhang, K. & Wu, W. Reducing ammonia volatilization from paddy field with rice straw derived biochar. Sci. Total Environ. 660, 512–518 (2019).

    ADS  CAS  Article  Google Scholar 


  • Source: Ecology - nature.com

    Reanalysis of putative ovarian follicles suggests that Early Cretaceous birds were feeding not breeding

    Increased mosquito abundance and species richness in Connecticut, United States 2001–2019