in

Impact of 10-Myr scale monsoon dynamics on Mesozoic climate and ecosystems

  • 1.

    Hinnov, L. A. Cyclostratigraphy and its revolutionizing applications in the earth and planetary sciences. Geol. Soc. Am. Bull. 125, 1703–1734 (2013).

    ADS  Google Scholar 

  • 2.

    Hays, J. D., Imbrie, J. & Shackleton, N. J. Variations in the Earth’s orbit: pacemaker of the ice ages. Science 194, 1121–1132 (1976).

    ADS  CAS  PubMed  Google Scholar 

  • 3.

    Laskar, J. et al. A long-term numerical solution for the insolation quantities of the Earth. Astron. Astrophys. 428, 261–285 (2004).

    ADS  Google Scholar 

  • 4.

    Laskar, J., Fienga, A., Gastineau, M. & Manche, H. La2010: a new orbital solution for the long-term motion of the Earth. Astron. Astrophys. 532, A89 (2011).

    ADS  MATH  Google Scholar 

  • 5.

    Boulila, S., Galbrun, B., Laskar, J. & Pälike, H. A ~9 Myr cycle in Cenozoic δ13C record and long-term orbital eccentricity modulation: Is there a link?. Earth Planet. Sci. Lett. 317, 273–281 (2012).

    ADS  Google Scholar 

  • 6.

    Ikeda, M. & Tada, R. Long period astronomical cycles from the Triassic to Jurassic bedded chert sequence (Inuyama, Japan); geologic evidences for the chaotic behavior of solar planets. Earth, Planets Space 65, 351–360 (2013).

    ADS  Google Scholar 

  • 7.

    Martinez, M. & Dera, G. Orbital pacing of carbon fluxes by a 9-My eccentricity cycle during the Mesozoic. Proc. Natl. Acad. Sci. 112, 12604–12609 (2015).

    ADS  CAS  PubMed  Google Scholar 

  • 8.

    Sprovieri, M. et al. Late Cretaceous orbitally-paced carbon isotope stratigraphy from the Bottaccione Gorge (Italy). Palaeogeogr. Palaeoclimatol. Palaeoecol. 379, 81–94 (2013).

    Google Scholar 

  • 9.

    Ikeda, M. & Tada, R. Reconstruction of the chaotic behavior of the solar system from geologic records. Earth Planet. Sci. Lett. 537, 116168 (2020).

    CAS  Google Scholar 

  • 10.

    Ikeda, M. & Tada, R. A 70 million year astronomical time scale for the deep-sea bedded chert sequence (Inuyama, Japan): Implications for Triassic-Jurassic geochronology. Earth Planet. Sci. Lett. 399, 30–43. https://doi.org/10.1016/j.epsl.2014.04.031 (2014).

    ADS  CAS  Article  Google Scholar 

  • 11.

    Kent, D. V., Olsen, P. E. & Muttoni, G. Astrochronostratigraphic polarity time scale (APTS) for the late triassic and early jurassic from continental sediments and correlation with standard marine stages. Earth-Sci. Rev. 166, 153–180 (2017).

    ADS  CAS  Google Scholar 

  • 12.

    Olsen, P. E., Kent, D. V. & Whiteside, J. H. Implications of the Newark Supergroup-based astrochronology and geomagnetic polarity time scale (Newark-APTS) for the tempo and mode of the early diversification of the Dinosauria. Earth Environ. Sci. Trans.-R. Soc. Edinb. 101, 201 (2011).

    Google Scholar 

  • 13.

    Ikeda, M., Tada, R. & Ozaki, K. Astronomical pacing of the global silica cycle recorded in Mesozoic bedded cherts. Nat. Commun. 8, 15532 (2017).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 14.

    Schaller, M. F., Wright, J. D. & Kent, D. V. A 30 Myr record of Late Triassic atmospheric pCO2 variation reflects a fundamental control of the carbon cycle by changes in continental weathering. Geol. Soc. Am. Bull. 127, 661–671 (2015).

    ADS  CAS  Google Scholar 

  • 15.

    Knobbe, T. K. & Schaller, M. F. A tight coupling between atmospheric pCO2 and sea-surface temperature in the Late Triassic. Geology 46, 43–46 (2018).

    ADS  CAS  Google Scholar 

  • 16.

    Trotter, J. A., Williams, I. S., Nicora, A., Mazza, M. & Rigo, M. Long-term cycles of Triassic climate change: a new δ18O record from conodont apatite. Earth Planet. Sci. Lett. 415, 165–174 (2015).

    ADS  CAS  Google Scholar 

  • 17.

    Langer, M. C. et al. Untangling the dinosaur family tree. Nature 551, E1 (2017).

    PubMed  Google Scholar 

  • 18.

    Luo, Z.-X., Gatesy, S. M., Jenkins, F. A., Amaral, W. W. & Shubin, N. H. Mandibular and dental characteristics of Late Triassic mammaliaform Haramiyavia and their ramifications for basal mammal evolution. Proc. Natl. Acad. Sci. 112, E7101–E7109 (2015).

    CAS  PubMed  Google Scholar 

  • 19.

    Olsen, P. E. et al. Ascent of dinosaurs linked to an iridium anomaly at the Triassic-Jurassic boundary. Science 296, 1305–1307 (2002).

    ADS  CAS  PubMed  Google Scholar 

  • 20.

    Stocker, M. R., Zhao, L.-J., Nesbitt, S. J., Wu, X.-C. & Li, C. A short-snouted, Middle Triassic phytosaur and its implications for the morphological evolution and biogeography of Phytosauria. Sci. Rep. 7, 46028 (2017).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 21.

    Xing, L. et al. An unusual trackway of a possibly bipedal archosaur from the Late Triassic of the Sichuan Basin China. Acta Palaeontol. Polonica 59, 863–871 (2013).

    Google Scholar 

  • 22.

    Olsen, P. E. & Kent, D. V. Milankovitch climate forcing in the tropics of Pangaea during the Late Triassic. Palaeogeogr. Palaeoclimatol. Palaeoecol. 122, 1–26 (1996).

    Google Scholar 

  • 23.

    Olsen, P. E. & Kent, D. V. Long-period Milankovitch cycles from the late Triassic and early Jurassic of eastern North America and their implications for the calibration of the Early Mesozoic time-scale and the long-term behaviour of the planets. Philos. Trans. R. Soc. Lond. Ser. A 357, 1761–1786. https://doi.org/10.1098/rsta.1999.0400 (1999).

    ADS  Article  Google Scholar 

  • 24.

    Kent, D. V. & Olsen, P. E. Magnetic polarity stratigraphy and paleolatitude of the Triassic-Jurassic Blomidon formation in the Fundy Basin (Canada): implications for early Mesozoic tropical climate gradients. Earth Planet. Sci. Lett. 179, 311–324 (2000).

    ADS  CAS  Google Scholar 

  • 25.

    Schaller, M. F., Wright, J. D. & Kent, D. V. Atmospheric pCO2 perturbations associated with the Central Atlantic magmatic province. Science 331, 1404–1409 (2011).

    ADS  CAS  PubMed  Google Scholar 

  • 26.

    Schaller, M. F., Wright, J. D., Kent, D. V. & Olsen, P. E. Rapid emplacement of the Central Atlantic Magmatic Province as a net sink for CO 2. Earth Planet. Sci. Lett. 323, 27–39 (2012).

    ADS  Google Scholar 

  • 27.

    Cornet, B. & Olsen, P. E. A summary of the biostratigraphy of the Newark Supergroup of eastern North America with comments on Early Mesozoic provinciality. In Simposio Sobre Floras del Triasico Tardio, su Fitogeografia y Paleoecologia: Memoria, III Congresso Latinoamericano de Paleontologia, Mexico (ed. Weber, R.) 67–81 (Instituto de Geologia Universidad Nacional Autonoma de Mexico, Mexico City., 1985).

    Google Scholar 

  • 28.

    Huber, P., Lucas, S. G. & Hunt, A. P. Vertebrate biochronology of the Newark Supergroup Triassic eastern North America. N. M. Mus. Nat. Hist. Sci. Bull. 3, 179–186 (1993).

    Google Scholar 

  • 29.

    Sugiyama, K. Triassic and Lower Jurassic radiolarian biostratigraphy in the siliceous claystone and bedded chert units of the southeastern Mino Terrane Central Japan. Bull. Mizunami Fossil Mus. 24, 79–193 (1997).

    Google Scholar 

  • 30.

    Blackburn, T. J. et al. Zircon U–Pb geochronology links the end-Triassic extinction with the Central Atlantic Magmatic Province. Science 340, 941–945 (2013).

    ADS  CAS  PubMed  Google Scholar 

  • 31.

    Olsen, P. E. et al. Mapping solar system chaos with the Geological Orrery. Proc. Natl. Acad. Sci. 116, 10664–10673 (2019).

    ADS  CAS  PubMed  Google Scholar 

  • 32.

    Kent, D. V. & Tauxe, L. Corrected Late Triassic latitudes for continents adjacent to the North Atlantic. Science 307, 240–244 (2005).

    ADS  CAS  PubMed  Google Scholar 

  • 33.

    Ikeda, M. et al. Carbon cycle dynamics linked with Karoo-Ferrar volcanism and astronomical cycles during Pliensbachian-Toarcian (Early Jurassic). Glob. Planet. Change 170, 163–171 (2018).

    ADS  Google Scholar 

  • 34.

    Kent, D. V. et al. Empirical evidence for stability of the 405-kiloyear Jupiter–Venus eccentricity cycle over hundreds of millions of years. Proc. Natl. Acad. Sci. 115, 6153–6158 (2018).

    ADS  CAS  PubMed  Google Scholar 

  • 35.

    Hartmann, J., Moosdorf, N., Lauerwald, R., Hinderer, M. & West, A. J. Global chemical weathering and associated P-release—the role of lithology, temperature and soil properties. Chem. Geol. 363, 145–163 (2014).

    ADS  CAS  Google Scholar 

  • 36.

    Kutzbach, J. & Gallimore, R. Pangaean climates: megamonsoons of the megacontinent. J. Geophys. Res. Atmos. 94, 3341–3357 (1989).

    ADS  Google Scholar 

  • 37.

    Kutzbach, J. E. Idealized Pangean climates: sensitivity to orbital change. Geol. Soc. Am. Spec. Pap. 288, 41–56 (1994).

    Google Scholar 

  • 38.

    Nordt, L., Atchley, S. & Dworkin, S. Collapse of the Late Triassic megamonsoon in western equatorial Pangea, present-day American Southwest. Bulletin 127, 1798–1815 (2015).

    CAS  Google Scholar 

  • 39.

    Donnadieu, Y. et al. A GEOCLIM simulation of climatic and biogeochemical consequences of Pangea breakup. Geochem. Geophys. Geosyst. 7, Q11019 (2006).

    ADS  Google Scholar 

  • 40.

    Van Dam, J. A. et al. Long-period astronomical forcing of mammal turnover. Nature 443, 687–691 (2006).

    ADS  PubMed  Google Scholar 

  • 41.

    Whiteside, J. H. et al. Extreme ecosystem instability suppressed tropical dinosaur dominance for 30 million years. Proc. Natl. Acad. Sci. 112, 7909–7913 (2015).

    ADS  CAS  PubMed  Google Scholar 

  • 42.

    Kent, D. V. & Clemmensen, L. B. Paleomagnetism and cycle stratigraphy of the Triassic Fleming Fjord and Gipsdalen formations of East Greenland. Bull. Geol. Soc. Den. 42, 121–136 (1996).

    Google Scholar 

  • 43.

    Diedrich, C. Isochirotherium trackways, their possible trackmakers (? Arizonasaurus): intercontinental giant archosaur migrations in the Middle Triassic tsunami-influenced carbonate intertidal mud flats of the European Germanic Basin. Carbonates Evaporites 30, 229–252 (2015).

    CAS  Google Scholar 

  • 44.

    Teitelbaum, C. S. et al. How far to go? Determinants of migration distance in land mammals. Ecol. Lett. 18, 545–552 (2015).

    PubMed  Google Scholar 

  • 45.

    Southwood, A. & Avens, L. Physiological, behavioral, and ecological aspects of migration in reptiles. J. Comput. Physiol. B 180, 1–23 (2010).

    Google Scholar 

  • 46.

    Carter, E. S. & Hori, R. S. Global correlation of the radiolarian faunal change across the Triassic Jurassic boundary. Can. J. Earth Sci. 42, 777–790 (2005).

    ADS  Google Scholar 

  • 47.

    Ikeda, M., Hori, R. S., Okada, Y. & Nakada, R. Volcanism and deep-ocean acidification across the end-Triassic extinction event. Palaeogeogr. Palaeoclimatol. Palaeoecol. 440, 725–733 (2015).

    Google Scholar 

  • 48.

    Guex, J. et al. Geochronological constraints on post-extinction recovery of the ammonoids and carbon cycle perturbations during the Early Jurassic. Palaeogeogr. Palaeoclimatol. Palaeoecol. 346, 1–11 (2012).

    Google Scholar 

  • 49.

    Maron, M. et al. Magnetostratigraphy, biostratigraphy, and chemostratigraphy of the Pignola-Abriola section: new constraints for the Norian-Rhaetian boundary. GSA Bull. 127, 962–974 (2015).

    CAS  Google Scholar 

  • 50.

    Sell, B. et al. Evaluating the temporal link between the Karoo LIP and climatic–biologic events of the Toarcian Stage with high-precision U–Pb geochronology. Earth Planet. Sci. Lett. 408, 48–56 (2014).

    ADS  CAS  Google Scholar 

  • 51.

    Burgess, S., Bowring, S., Fleming, T. & Elliot, D. High-precision geochronology links the Ferrar large igneous province with early-Jurassic ocean anoxia and biotic crisis. Earth Planet. Sci. Lett. 415, 90–99 (2015).

    ADS  CAS  Google Scholar 

  • 52.

    Ritterbush, K. A., Rosas, S., Corsetti, F. A., Bottjer, D. J. & West, A. J. Andean sponges reveal long-term benthic ecosystem shifts following the end-Triassic mass extinction. Palaeogeogr. Palaeoclimatol. Palaeoecol. 420, 193–209 (2015).

    Google Scholar 

  • 53.

    White, A. F. & Blum, A. E. Effects of climate on chemical weathering in watersheds. Geochim. Cosmochim. Acta 59, 1729–1747 (1995).

    ADS  CAS  Google Scholar 

  • 54.

    Torrence, C. & Compo, G. P. A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 79, 61–78 (1998).

    ADS  Google Scholar 

  • 55.

    Royer, D. L., Donnadieu, Y., Park, J., Kowalczyk, J. & Goddéris, Y. Error analysis of CO2 and O2 estimates from the long-term geochemical model GEOCARBSULF. Am. J. Sci. 314, 1259–1283 (2014).

    ADS  CAS  Google Scholar 

  • 56.

    Brenner, G. J. Flowering Plant Origin, Evolution & Phylogeny 91–115 (Springer, Berlin, 1996).

    Google Scholar 

  • 57.

    Bernardi, M., Gianolla, P., Petti, F. M., Mietto, P. & Benton, M. J. Dinosaur diversification linked with the Carnian Pluvial Episode. Nat. Commun. 9, 1499 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 58.

    Li, M. et al. Astronomical tuning and magnetostratigraphy of the Upper Triassic Xujiahe Formation of South China and Newark Supergroup of North America: implications for the Late Triassic time scale. Earth Planet. Sci. Lett. 475, 207–223 (2017).

    ADS  CAS  Google Scholar 


  • Source: Ecology - nature.com

    Effects of prey trophic mode on the gross-growth efficiency of marine copepods: the case of mixoplankton

    Schistocephalus parasite infection alters sticklebacks’ movement ability and thereby shapes social interactions