in

In situ observations show vertical community structure of pelagic fauna in the eastern tropical North Atlantic off Cape Verde

  • 1.

    Robison, B. H. Deep pelagic biology. J. Exp. Mar. Biol. Ecol. 300, 253–272 (2004).

    Article  Google Scholar 

  • 2.

    Ramirez-Llodra, E. et al. Deep, diverse and definitely different: unique attributes of the world’s largest ecosystem. Biogeosciences 7, 2851–2899 (2010).

    ADS  Article  Google Scholar 

  • 3.

    Thurber, A. R. et al. Ecosystem function and services provided by the deep sea. Biogeosciences 11, 3941–3963 (2014).

    ADS  Article  Google Scholar 

  • 4.

    Keeling, R. F., Körtzinger, A. & Gruber, N. Ocean deoxygenation in a warming world. Ann. Rev. Mar. Sci. 2, 199–229 (2010).

    PubMed  Article  Google Scholar 

  • 5.

    Levin, L. A. & Le Bris, N. The deep ocean under climate change. Science 350, 766–768 (2015).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 6.

    Schmidtko, S., Stramma, L. & Visbeck, M. Decline in global oceanic oxygen content during the past five decades. Nature 542, 335–339 (2017).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 7.

    Breitburg, D. L. et al. Declining oxygen in the global ocean and coastal waters. Science 359, 1–11 (2018).

    Article  CAS  Google Scholar 

  • 8.

    Robison, B. H. Conservation of deep pelagic biodiversity. Conserv. Biol. 23, 847–858 (2009).

    PubMed  Article  Google Scholar 

  • 9.

    Bianchi, D., Galbraith, E. D., Carozza, D. A., Mislan, K. A. S. & Stock, C. A. Intensification of open-ocean oxygen depletion by vertically migrating animals. Nat. Geosci. 6, 545–548 (2013).

    ADS  CAS  Article  Google Scholar 

  • 10.

    Paulmier, A., Ruiz-Pino, D., Garçon, V. & Farías, L. Maintaining of the eastern south pacific oxygen minimum zone (OMZ) off Chile. Geophys. Res. Lett. 33, 1–6 (2006).

    Article  CAS  Google Scholar 

  • 11.

    Gilly, W. F., Beman, J. M., Litvin, S. Y. & Robison, B. H. Oceanographic and biological effects of shoaling of the oxygen minimum zone. Ann. Rev. Mar. Sci. 5, 393–420 (2013).

    PubMed  Article  Google Scholar 

  • 12.

    Chavez, F. P. & Messié, M. A comparison of eastern boundary upwelling ecosystems. Prog. Oceanogr. 83, 80–96 (2009).

    ADS  Article  Google Scholar 

  • 13.

    Karstensen, J., Stramma, L. & Visbeck, M. Oxygen minimum zones in the eastern tropical Atlantic and Pacific oceans. Prog. Oceanogr. 77, 331–350 (2008).

    ADS  Article  Google Scholar 

  • 14.

    Deutsch, C., Ferrel, A., Seibel, B., Pörtner, H.-O. & Huey, R. B. Climate change tightens a metabolic constraint on marine habitats. Science 348, 1132–1135 (2015).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 15.

    Ekau, W., Auel, H., Pörtner, H.-O. & Gilbert, D. Impacts of hypoxia on the structure and processes in pelagic communities (zooplankton, macro-invertebrates and fish). Biogeosciences 7, 1669–1699 (2010).

    ADS  CAS  Article  Google Scholar 

  • 16.

    Childress, J. J. & Seibel, B. A. Life at stable low oxygen levels: adaptations of animals to oceanic oxygen minimum layers. J. Exp. Biol. 201, 1223–1232 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 17.

    Gallo, N. D. & Levin, L. A. Fish ecology and evolution in the world’s oxygen minimum zones and implications of ocean deoxygenation. Adv. Mar. Biol. 74, 117–198 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 18.

    Seibel, B. A. et al. Metabolic suppression during protracted exposure to hypoxia in the jumbo squid, Dosidicus gigas, living in an oxygen minimum zone. J. Exp. Biol. 217, 2555–2568 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

  • 19.

    Lampert, W. The adaptive significance of diel vertical migration of zooplankton. Funct. Ecol. 3, 21–27 (1989).

    Article  Google Scholar 

  • 20.

    Longhurst, A. R., Bedo, A. W., Harrison, W. G., Head, E. J. H. & Sameoto, D. D. Vertical flux of respiratory carbon by oceanic diel migrant biota. Deep. Res. Part A. 37, 685–694 (1990).

    ADS  CAS  Article  Google Scholar 

  • 21.

    Kiko, R. et al. Zooplankton-mediated fluxes in the eastern tropical North Atlantic. Front. Mar. Sci. 7, 1–21 (2020).

    ADS  Article  Google Scholar 

  • 22.

    Christiansen, S. et al. Particulate matter flux interception in oceanic mesoscale eddies by the polychaete Poeobius sp. Limnol. Oceanogr. 63, 2093–2109 (2018).

    ADS  CAS  Article  Google Scholar 

  • 23.

    Robison, B. H., Sherlock, R. E., Reisenbichler, K. R. & Mcgill, P. R. Running the gauntlet: assessing the threats to vertical migrators. Front. Mar. Sci. 7, 1–10 (2020).

    CAS  Article  Google Scholar 

  • 24.

    NogueiraJúnior, M., PereiraBrandini, F. & UgazCodina, J. C. Diel vertical dynamics of gelatinous zooplankton (Cnidaria, Ctenophora and Thaliacea) in a subtropical stratified ecosystem (South Brazilian Bight). PLoS ONE 10, 1–28 (2015).

    Google Scholar 

  • 25.

    Wishner, K. F., Outram, D. M., Seibel, B. A., Daly, K. L. & Williams, R. L. Zooplankton in the eastern tropical north Pacific: boundary effects of oxygen minimum zone expansion. Deep Sea Res. Part I(79), 122–140 (2013).

    Article  CAS  Google Scholar 

  • 26.

    Hoving, H. J. T. & Robison, B. H. Vampire squid: detritivores in the oxygen minimum zone. Proc. R. Soc. B Biol. Sci. 279, 4559–4567 (2012).

    Article  Google Scholar 

  • 27.

    Seibel, B. A. Cephalopod susceptibility to asphyxiation via ocean incalescence, deoxygenation and acidification. Physiology 31, 418–429 (2016).

    CAS  PubMed  Article  Google Scholar 

  • 28.

    Gilly, W. F. et al. Vertical and horizontal migrations by the jumbo squid Dosidicus gigas revealed by electronic tagging. Mar. Ecol. Prog. Ser. 324, 1–17 (2006).

    ADS  Article  Google Scholar 

  • 29.

    Zuyev, G., Nigmatullin, C., Chesalin, M. & Nesis, K. Main results of long-term worldwide studies on tropical nektonic oceanic squid genus Sthenoteuthis: an overview of the Soviet investigations. Bull. Mar. Sci. 71, 1019–1060 (2002).

    Google Scholar 

  • 30.

    Prince, E. D. et al. Ocean scale hypoxia-based habitat compression of Atlantic istiophorid billfishes. Fish. Oceanogr. 19, 448–462 (2010).

    Article  Google Scholar 

  • 31.

    Stramma, L. et al. Expansion of oxygen minimum zones may reduce available habitat for tropical pelagic fishes. Nat. Clim. Chang. 2, 33–37 (2012).

    ADS  CAS  Article  Google Scholar 

  • 32.

    Thuesen, E. V. et al. Intragel oxygen promotes hypoxia tolerance of scyphomedusae. J. Exp. Biol. 208, 2475–2482 (2005).

    PubMed  Article  Google Scholar 

  • 33.

    Thuesen, E. V. & Childress, J. J. Oxygen consumption rates and metabolic enzyme activities of oceanic California Medusae in relation to body size and habitat depth. Biol. Bull. 187, 84–98 (1994).

    CAS  PubMed  Article  Google Scholar 

  • 34.

    Mills, C. E. Jellyfish blooms: are populations increasing globally in response to changing ocean conditions?. Hydrobiologia 451, 55–68 (2001).

    Article  Google Scholar 

  • 35.

    Hauss, H. et al. Dead zone or oasis in the open ocean? Zooplankton distribution and migration in low-oxygen modewater eddies. Biogeosciences 13, 1977–1989 (2016).

    ADS  CAS  Article  Google Scholar 

  • 36.

    Russell, F. S. On a remarkable new scyphomedusan. J. Mar. Biol. Assoc. UK 47, 469–473 (1967).

    Article  Google Scholar 

  • 37.

    Matsumoto, G. I. & Robison, B. H. Kiyohimea usagi, a new species of lobate ctenophore from the Monterey Submarine Canyon. Bull. Mar. Sci. 51, 19–29 (1992).

    Google Scholar 

  • 38.

    Matsumoto, G. I., Raskoff, K. A. & Lindsay, D. J. Tiburonia granrojo n. sp., a mesopelagic scyphomedusa from the Pacific Ocean representing the type of a new subfamily (class Scyphozoa: order Semaeostomeae: family Ulmaridae: subfamily Tiburoniinae subfam. nov.). Mar. Biol. 143, 73–77 (2003).

    Article  Google Scholar 

  • 39.

    Lindsay, D. J. & Hunt, J. C. Biodiversity in midwater cnidarians and ctenophores: submersible-based results from deep-water bays in the Japan Sea nand north-western Pacific. J. Mar. Biol. Assoc. UK 85, 503–517 (2005).

    Article  Google Scholar 

  • 40.

    Robison, B. H., Raskoff, K. A. & Sherlock, R. E. Ecological substrate in midwater: Doliolula equus, a new mesopelagic tunicate. J. Mar. Biol. Assoc. UK 85, 655–663 (2005).

    Article  Google Scholar 

  • 41.

    Robison, B. H., Sherlock, R. E. & Reisenbichler, K. R. The bathypelagic community of Monterey Canyon. Deep. Res. Part II(57), 1551–1556 (2010).

    Article  Google Scholar 

  • 42.

    Robison, B. H., Reisenbichler, K. R., Sherlock, R. E., Silguero, J. M. B. & Chavez, F. P. Seasonal abundance of the siphonophore, Nanomia bijuga, Monterey Bay. Deep. Res. II(45), 1741–1751 (1998).

    ADS  Google Scholar 

  • 43.

    Choy, C. A., Haddock, S. H. D. & Robison, B. H. Deep pelagic food web structure as revealed by in situ feeding observations. Proc. R. Soc. B Biol. Sci. 284, 1–10 (2017).

    Google Scholar 

  • 44.

    Lindsay, D. J. et al. The perils of online biogeographic databases: a case study with the ‘monospecific’ genus Aegina (Cnidaria, Hydrozoa, Narcomedusae). Mar. Biol. Res. 13, 494–512 (2017).

    Article  Google Scholar 

  • 45.

    Raskoff, K., Hopcroft, R. R., Kosobokova, K., Purcell, J. & Youngbluth, M. Jellies under ice: ROV observations from the Arctic 2005 hidden ocean expedition. Deep. Res. Part II(57), 111–126 (2010).

    Article  Google Scholar 

  • 46.

    Hosia, A., Falkenhaug, T., Baxter, E. J. & Pagès, F. Abundance, distribution and diversity of gelatinous predators along the northern Mid-Atlantic Ridge: a comparison of different sampling methodologies. PLoS ONE 12, 1–18 (2017).

    Article  CAS  Google Scholar 

  • 47.

    Lindsay, D. J. et al. Submersible observations on the deep-sea fauna of the south-west Indian Ocean: preliminary results for the mesopelagic and near-bottom communities. JAMSTEC J. Deep Sea Res. 16, 1–10 (2000).

    Google Scholar 

  • 48.

    Robison, B. H., Reisenbichler, K. R. & Sherlock, R. E. The coevolution of midwater research and ROV technology at MBARI. Oceanography 30, 26–37 (2017).

    Article  Google Scholar 

  • 49.

    Hays, G. C., Doyle, T. K. & Houghton, J. D. R. A Paradigm Shift in the Trophic Importance of Jellyfish?. Trends Ecol. Evol. 33, 874–884 (2018).

    PubMed  Article  Google Scholar 

  • 50.

    Hoving, H. J. T. et al. the pelagic in situ observation system (PELAGIOS) to reveal biodiversity, behavior, and ecology of elusive oceanic fauna. Ocean Sci. 15, 1327–1340 (2019).

    ADS  CAS  Article  Google Scholar 

  • 51.

    Behrenfeld, M. J. & Falkowski, P. G. Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnol. Oceanogr. 42, 1–20 (1997).

    ADS  CAS  Article  Google Scholar 

  • 52.

    Breitburg, D. L. et al. The pattern and influence of low dissolved oxygen in the Patuxent River, a seasonally hypoxic estuary. Estuaries 26, 280–297 (2003).

    CAS  Article  Google Scholar 

  • 53.

    Bailey, T. G., Youngbluth, M. J. & Owen, G. P. Chemical composition and metabolic rates of gelatinous zooplankton from midwater and benthic boundary layer environments off Cape Hatteras, North Carolina, USA. Mar. Ecol. Prog. Ser. 122, 121–134 (1995).

    ADS  CAS  Article  Google Scholar 

  • 54.

    Maas, A. E., Frazar, S. L., Outram, D. M., Seibel, B. A. & Wishner, K. F. Fine-scale vertical distribution of macroplankton and micronekton in the Eastern Tropical North Pacific in association with an oxygen minimum zone. J. Plankton Res. 36, 1557–1575 (2014).

    Article  Google Scholar 

  • 55.

    Morrison, J. M. et al. The oxygen minimum zone in the Arabian Sea during 1995. Deep. Res. Part II(46), 1903–1931 (1999).

    Article  Google Scholar 

  • 56.

    Tecchio, S. et al. Food web structure and vulnerability of a deep-sea ecosystem in the NW Mediterranean Sea. Deep. Res. Part I(75), 1–15 (2013).

    Google Scholar 

  • 57.

    Toda, R., Lindsay, D. J., Fuentes, V. L. & Moteki, M. Community structure of pelagic cnidarians off Adélie Land, East Antarctica, during austral summer 2008. Polar Biol. 37, 269–289 (2014).

    Article  Google Scholar 

  • 58.

    Licandro, P. et al. Biogeography of jellyfish in the North Atlantic, by traditional and genomic methods. Earth Syst. Sci. Data 7, 173–191 (2015).

    ADS  Article  Google Scholar 

  • 59.

    Lindsay, D., Umetsu, M., Grossmann, M., Miyake, H. & Yamamoto, H. The Gelatinous Macroplankton Community at the Hatoma Knoll Hydrothermal Vent, in Subseafloor Biosph. Linked to Hydrothermal Syst. TAIGA Concept (J.-i. Ishibashi, eds.) 639–666 (2015). https://doi.org/10.1007/978-4-431-54865-2.

  • 60.

    Johnsen, S. & Widder, E. A. Ultraviolet absorption in transparent zooplankton and its implications for depth distribution and visual predation. Mar. Biol. 138, 717–730 (2001).

    Article  Google Scholar 

  • 61.

    Lüskow, F. et al. Distribution and biomass of gelatinous zooplankton in relation to an oxygen minimum zone and a shallow seamount in the Eastern Tropical Atlantic Ocean. Reg. Stud. Mar. Sci. Submitt. (2020)  

  • 62.

    Raskoff, K. A. Distributions and trophic interactions of mesopelagic hydromedusae in Monterey Bay, CA: In situ studies with the MBARI ROVs Ventana and Tiburon. Ocean Sci. Diego, CA. Eos, Trans. Am. Geophys. Union. 79, 1, (1998).

  • 63.

    Youngbluth, M., Sørnes, T., Hosia, A. & Stemmann, L. Vertical distribution and relative abundance of gelatinous zooplankton, in situ observations near the Mid-Atlantic Ridge. Deep. Res. II Top. Stud. Oceanogr. 55, 119–125 (2008).

    ADS  Article  Google Scholar 

  • 64.

    Grossmann, M. M., Nishikawa, J. & Lindsay, D. J. Diversity and community structure of pelagic cnidarians in the Celebes and Sulu Seas, southeast Asian tropical marginal seas. Deep. Res. Part I(100), 54–63 (2015).

    Article  Google Scholar 

  • 65.

    Swift, H. F., Hamner, W. M., Robison, B. H. & Madin, L. P. Feeding behavior of the ctenophore Thalassocalyce inconstans: revision of anatomy of the order Thalassocalycida. Mar. Biol. 156, 1049–1056 (2009).

    Article  Google Scholar 

  • 66.

    Hoving, H. J., Neitzel, P. & Robison, B. In situ observations lead to the discovery of the large ctenophore Kiyohimea usagi (Lobata: Eurhamphaeidae) in the eatern tropical Atlantic. Zootaxa 4526, 232–238 (2018).

    PubMed  Article  Google Scholar 

  • 67.

    Kiko, R., Hauss, H., Buchholz, F. & Melzner, F. Ammonium excretion and oxygen respiration of tropical copepods and euphausiids exposed to oxygen minimum zone conditions. Biogeosciences 13, 2241–2255 (2016).

    ADS  CAS  Article  Google Scholar 

  • 68.

    Seibel, B. A., Schneider, J. L., Kaartvedt, S., Wishner, K. F. & Daly, K. L. Hypoxia tolerance and metabolic suppression in oxygen minimum zone euphausiids: implications for ocean deoxygenation and biogeochemical cycles. Integr. Comp. Biol. 56, 510–523 (2016).

    CAS  PubMed  Article  Google Scholar 

  • 69.

    Christiansen, B. et al. SEAMOX: The influence of Seamounts and Oxygen Minimum Zones on Pelagic Fauna in the Eastern Tropical Atlantic. Cruise No. MSM49 (MARIA S. MERIAN-Berichte) 1–42 (2016). https://doi.org/10.2312/cr_msm49.

  • 70.

    Haeckel, S. The Deep-Sea Guide, (DSG) at http://dsg.mbari.org. Monterey Bay Aquarium Research Institute (MBARI). Consult. 2020-04-14. (1879)

  • 71.

    Lilley, M. K. S. & Lombard, F. Respiration of fragile planktonic zooplankton: extending the possibilities with a single method. J. Exp. Mar. Bio. Ecol. 471, 226–231 (2015).

    Article  Google Scholar 

  • 72.

    Raskoff, K. A. Foraging, prey capture, and gut contents of the mesopelagic narcomedusa Solmissus spp. (Cnidaria: Hydrozoa). Mar. Biol. 141, 1099–1107 (2002).

    Article  Google Scholar 

  • 73.

    Thuesen, E. V. & Childress, J. J. Metabolic rates, enzyme activities and chemical compositions of some deep-sea pelagic worms, particularly Nectonemertes mirabilis (Nemertea; Hoplonemertinea) and Poeobius meseres (Annelida; Polychaeta). Deep. Res. I(40), 937–951 (1993).

    Article  Google Scholar 

  • 74.

    Biard, T. et al. In situ imaging reveals the biomass of giant protists in the global ocean. Nature 532, 504–519 (2016).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 75.

    Childress, J. J. Are there physiological and biochemical adaptations of metabolism in deep-sea animals?. Trends Ecol. Evol. 10, 1–10 (1995).

    Article  Google Scholar 

  • 76.

    Koslow, J. A., Goericke, R., Lara-Lopez, A. & Watson, W. Impact of declining intermediate-water oxygen on deepwater fishes in the California Current. Mar. Ecol. Prog. Ser. 436, 207–218 (2011).

    ADS  Article  Google Scholar 

  • 77.

    Netburn, A. N. & Koslow, J. A. Dissolved oxygen as a constraint on daytime deep scattering layer depth in the southern California current ecosystem. Deep. Res. Part I(104), 149–158 (2015).

    Article  CAS  Google Scholar 

  • 78.

    Klevjer, T. A., Torres, D. J. & Kaartvedt, S. Distribution and diel vertical movements of mesopelagic scattering layers in the Red Sea. Mar. Biol. 159, 1833–1841 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  • 79.

    Aksnes, D. L. et al. Light penetration structures the deep acoustic scattering layers in the global ocean. Sci. Adv. 3, 1–6 (2017).

    Article  Google Scholar 

  • 80.

    Osborn, D. A., Silver, M. W., Castro, C. G., Bros, S. M. & Chavez, F. P. The habitat of mesopelagic scyphomedusae in Monterey Bay, California. Deep. Res. Part I(54), 1241–1255 (2007).

    Article  Google Scholar 

  • 81.

    Roe, H. S. J., James, P. T. & Thurston, M. H. The diel migrations and distributions within a mesopelagic community in the North East Atlantic. 6. Medusae, Ctenophores, Amphipods and Euphasusiids. Prog. Oceanogr. 13, 425–460 (1984).

    ADS  Article  Google Scholar 

  • 82.

    Morita, H. et al. Spatio-temporal structure of the jellyfish community in the transition zone of cold and warm currents in the northwest pacific. Plankt. Benthos Res. 12, 266–284 (2017).

    Article  Google Scholar 

  • 83.

    Grossmann, M. M., Nishikawa, J. & Lindsay, D. J. Diversity and community structure of pelagic cnidarians in the Celebes and Sulu Seas, southeast Asian tropical marginal seas. Deep. Res. I Oceanogr. Res. Pap. 100, 54–63 (2015).

    ADS  Article  Google Scholar 

  • 84.

    Hidaka-Umetsu, M. & Lindsay, D. J. Comparative ROV surveys reveal jellyfish blooming in a deep-sea caldera: the first report of Earleria bruuni from the Pacific Ocean. J. Mar. Biol. Assoc. UK 98, 2075–2085 (2018).

    Article  Google Scholar 

  • 85.

    Haddock, S. H. D., Dunn, C. W. & Pugh, P. R. A re-examination of siphonophore terminology and morphology, applied to the description of two new prayine species with remarkable bio-optical properties. J. Mar. Biol. Assoc. UK 85, 695–707 (2005).

    Article  Google Scholar 

  • 86.

    Fenaux, R. & Youngbluth, M. J. A new mesopelagic Appendicularian, Mesochordaeus bahamasi gen. nov., sp. nov. J. Mar. Biol. Assoc. UK 70, 755–760 (1990).

    Article  Google Scholar 

  • 87.

    Hopcroft, R. R. & Robison, B. H. A new mesopelagic larvacean, Mesochordaeus erythrocephalus, sp. nov., from Monterey Bay, with a description of its filtering house. J. Plankton Res. 21, 1923–1937 (1999).

    Article  Google Scholar 

  • 88.

    Stramma, L., Schmidtko, S., Levin, L. A. & Johnson, G. C. Ocean oxygen minima expansions and their biological impacts. Deep. Res. I Oceanogr. Res. Pap. 57, 587–595 (2010).

    ADS  CAS  Article  Google Scholar 

  • 89.

    Garçon, V. et al. Multidisciplinary observing in the world ocean’s oxygen minimum zone regions: from climate to fish—the VOICE Initiative. Front. Mar. Sci. 6, 1–22 (2019).

    Article  Google Scholar 

  • 90.

    Christiansen, B. et al. SEAMOX: The Influence of Seamounts and Oxygen Minimum Zones on Pelagc Fauna in the Eastern Tropical Atlantic – Cruise No. MSM49 – November 28 – December 21, 2015 – Las Palmas de Gran Canaria (Spain) – Mindelo (Republic of Cape Verde). MARIA S. MERIAN-Berichte 1–42 (2016). https://doi.org/10.2312/cr_msm49.

  • 91.

    Picheral, M. et al. The Underwater Vision Profiler 5: an advanced instrument for high spatial resolution studies of particle size spectra and zooplankton. Limnol. Oceanogr. Methods 8, 462–473 (2010).

    Article  Google Scholar 

  • 92.

    Schlining, B. M. & Jacobsen Stout, N. MBARI’s Video Annotation and Reference System. IEEE 1–5 (2006). https://doi.org/10.1109/OCEANS.2006.306879.

  • 93.

    Reisenbichler, K. R. et al. Automating MBARI ’s midwater time-series video surveys: the transition from ROV to AUV. Ocean. 2016 MTS/IEEE Monterey 1–9 (2016). https://doi.org/10.1109/OCEANS.2016.7761499.

  • 94.

    Biard, T. & Ohman, M. D. Vertical niche definition of test-bearing protists (Rhizaria) into the twilight zone revealed by in situ imaging. Limnol. Oceanogr. https://doi.org/10.1002/lno.11472 (2020).

    Article  Google Scholar 

  • 95.

    Nakamura, Y. et al. Optics-based surveys of large unicellular zooplankton: a case study on radiolarians and phaeodarians. Plankt. Benthos Res. 12, 95–103 (2017).

    Article  Google Scholar 

  • 96.

    Hunt, J. C. & Lindsay, D. J. Observations on the behavior of Atolla (Scyphozoa: Coronatae) and Nanomia (Hydrozoa: Physonectae): use of the hypertrophied tentacle in prey capture. Plankt. Biol. Ecol. 45, 239–242 (1998).

    Google Scholar 

  • 97.

    Kramp, P. L. Synopsis of the Medusae of the World. J. Mar. Biol. Assoc. UK 40, 7–382 (1961).

    Article  Google Scholar 

  • 98.

    Mills, C. E., Haddock, S. H. D., Dunn, C. W. & Pugh, P. R. Key To the Siphonophora. In Light Smith’s Man Intertidal Invertebr Cent Calif Coast (ed. Carlton, J. T.) 150–166 (University of California Press, San Francisco, 2007).

    Google Scholar 

  • 99.

    Sherlock, R. E., Walz, K. R., Schlining, K. L. & Robison, B. H. Morphology, ecology, and molecular biology of a new species of giant larvacean in the eastern North Pacific: Bathochordaeus mcnutti sp. nov.. Mar. Biol. 164, 1–15 (2017).

    CAS  Article  Google Scholar 

  • 100.

    Latasa, M., Cabello, A. M., Morán, X. A. G., Massana, R. & Scharek, R. Distribution of phytoplankton groups within the deep chlorophyll maximum. Limnol. Oceanogr. 62, 665–685 (2017).

    ADS  CAS  Article  Google Scholar 


  • Source: Ecology - nature.com

    A core microbiota dominates a rich microbial diversity in the bovine udder and may indicate presence of dysbiosis

    Case studies show climate variation linked to rise and fall of medieval nomadic empires