in

Increased temperature has no consequence for behavioral manipulation despite effects on both partners in the interaction between a crustacean host and a manipulative parasite

  • 1.

    Deguines, N., Brashares, J. S. & Prugh, L. R. Precipitation alters interactions in a grassland ecological community. J. Anim. Ecol. 86, 262–272 (2017).

    PubMed  Google Scholar 

  • 2.

    Bernabé, T. N. et al. Warming weakens facilitative interactions between decomposers and detritivores, and modifies freshwater ecosystem functioning. Glob. Change Biol. 24, 3170–3186 (2018).

    ADS  Google Scholar 

  • 3.

    Boulangeat, I., Svenning, J. C., Daufresne, T., Leblond, M. & Gravel, D. The transient response of ecosystems to climate change is amplified by trophic interactions. Oikos 127, 1822–1833 (2018).

    Google Scholar 

  • 4.

    Salt, J. L., Bulit, C., Zhang, W., Qi, H. & Montagnes, D. J. S. Spatial extinction or persistence: Landscape–temperature interactions perturb predator–prey dynamics. Ecography (Cop.) 40, 1177–1186 (2017).

    Google Scholar 

  • 5.

    Zhang, L., Takahashi, D., Hartvig, M. & Andersen, K. H. Food-web dynamics under climate change. Proc. R. Soc. B 284, 20171772 (2017).

    PubMed  Google Scholar 

  • 6.

    Campanati, C., Dupont, S., Williams, G. A. & Thiyagarajan, V. Differential sensitivity of larvae to ocean acidification in two interacting mollusc species. Mar. Environ. Res. 141, 66–74 (2018).

    CAS  PubMed  Google Scholar 

  • 7.

    Woehler, E., Patterson, T. A., Bravington, M. V., Hobday, A. J. & Chambers, L. E. Climate and competition in abundance trends in native and invasive Tasmanian gulls. Mar. Ecol. Prog. Ser. 511, 249–263 (2014).

    ADS  Google Scholar 

  • 8.

    Frizzi, F., Bartalesi, V. & Santini, G. Combined effects of temperature and interspecific competition on the mortality of the invasive garden ant, Lasius neglectus: A laboratory study. J. Therm. Biol. 65, 76–81 (2017).

    PubMed  Google Scholar 

  • 9.

    Grainger, T. N., Rego, A. I. & Gilbert, B. Temperature-dependent species interactions shape priority effects and the persistence of unequal competitors. Am. Nat. 191, 197–209 (2018).

    PubMed  Google Scholar 

  • 10.

    Friesen, O. C., Poulin, R. & Lagrue, C. Parasite-mediated microhabitat segregation between congeneric hosts. Biol. Lett. 14, 20170671 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 11.

    Srinivasan, U., Elsen, P. R., Tingley, M. W. & Wilcove, D. S. Temperature and competition interact to structure Himalayan bird communities. Proc. R. Soc. B Biol. Sci. 285, 20172593 (2018).

    Google Scholar 

  • 12.

    Franke, F., Armitage, S. A. O., Kutzer, M. A. M., Kurtz, J. & Scharsack, J. P. Environmental temperature variation influences fitness trade-offs and tolerance in a fish–tapeworm association. Parasit. Vectors 10, 252 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 13.

    Castano-Vazquez, F., Martinez, J., Merino, S. & Lozano, M. Experimental manipulation of temperature reduce ectoparasites in nests of blue tits Cyanistes caeruleus. J. Avian Biol. 49, UNSP e01695 (2018).

    Google Scholar 

  • 14.

    Paull, S. H. & Johnson, P. T. J. How temperature, pond-drying, and nutrients influence parasite infection and pathology. EcoHealth 15, 396–408 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 15.

    Larsen, M. H. & Mouritsen, K. N. Temperature–parasitism synergy alters intertidal soft-bottom community structure. J. Exp. Mar. Bio. Ecol. 460, 109–119 (2014).

    Google Scholar 

  • 16.

    Marcogliese, D. J. The distribution and abundance of parasites in aquatic ecosystems in a changing climate: More than just temperature. Integr. Comp. Biol. 56, 611–619 (2016).

    PubMed  Google Scholar 

  • 17.

    Mouritsen, K. N., Sørensen, M. M., Poulin, R. & Fredensborg, B. L. Coastal ecosystems on a tipping point: Global warming and parasitism combine to alter community structure and function. Glob. Change Biol. 24, 4340–4356 (2018).

    ADS  Google Scholar 

  • 18.

    Hatcher, M. J., Dick, J. T. A. & Dunn, A. M. Diverse effects of parasites in ecosystems: Linking interdependent processes. Front. Ecol. Environ. 10, 186–194 (2012).

    Google Scholar 

  • 19.

    Repetto, M. & Griffen, B. D. Physiological consequences of parasite infection in the burrowing mud shrimp, Upogebia pugettensis, a widespread ecosystem engineer. Mar. Freshw. Res. 63, 60–67 (2012).

    Google Scholar 

  • 20.

    Boze, B. G. V. & Moore, J. The effect of a nematode parasite on feeding and dung-burying behavior of an ecosystem engineer. Integr. Comp. Biol. 54, 177–183 (2014).

    CAS  PubMed  Google Scholar 

  • 21.

    Laverty, C. et al. Temperature rise and parasitic infection interact to increase the impact of an invasive species. Int. J. Parasitol. 47, 291–296 (2017).

    PubMed  Google Scholar 

  • 22.

    Labaude, S., Cézilly, F. & Rigaud, T. Temperature-related intraspecific variability in the behavioral manipulation of acanthocephalan parasites on their gammarid hosts. Biol. Bull. 232, 82–90 (2017).

  • 23.

    Labaude, S., Rigaud, T. & Cézilly, F. Additive effects of temperature and infection with an acanthocephalan parasite on the shredding activity of Gammarus fossarum (Crustacea: Amphipoda): The importance of aggregative behavior. Glob. Chang. Biol. 23, 1415–1424 (2017).

  • 24.

    MacNeil, C., Dick, J. T. A. & Elwood, R. W. The trophic ecology of freshwater Gammarus spp. (crustacea:amphipoda): Problems and perspectives concerning the functional feeding group concept. Biol. Rev. 72, 349–364 (1997).

    Google Scholar 

  • 25.

    Piscart, C., Genoel, R., Doledec, S., Chauvet, E. & Marmonier, P. Effects of intense agricultural practices on heterotrophic processes in streams. Environ. Pollut. 157, 1011–1018 (2009).

    CAS  PubMed  Google Scholar 

  • 26.

    Degani, G., Bromley, H. J., Ortal, R., Netzer, Y. & Harari, N. Diets of rainbow trout (Salmo gairdneri) in a thermally constant stream. Vie Milieu 37, 99–103 (1987).

    Google Scholar 

  • 27.

    Friberg, N. et al. The effect of brown trout (Salmo trutta L.) on stream invertebrate drift, with special reference to Gammarus pulex L. Hydrobiologia 294, 105–110 (1994).

    Google Scholar 

  • 28.

    Kelly, D. W., Dick, J. T. A. & Montgomery, W. I. The functional role of Gammarus (Crustacea, Amphipoda): Shredders, predators, or both?. Hydrobiologia 485, 199–203 (2002).

    Google Scholar 

  • 29.

    Piscart, C., Bergerot, B., Laffaille, P. & Marmonier, P. Are amphipod invaders a threat to regional biodiversity?. Biol. Invasions 12, 853–863 (2010).

    Google Scholar 

  • 30.

    Constable, D. & Birkby, N. J. The impact of the invasive amphipod Dikerogammarus haemobaphes on leaf litter processing in UK rivers. Aquat. Ecol. 50, 273–281 (2016).

    Google Scholar 

  • 31.

    Foucreau, N., Puijalon, S., Hervant, F. & Piscart, C. Effect of leaf litter characteristics on leaf conditioning and on consumption by Gammarus pulex. Freshw. Biol. 58, 1672–1681 (2013).

    Google Scholar 

  • 32.

    Maltby, L., Clayton, S. A., Wood, R. M. & McLoughlin, N. Evaluation of the Gammarus pulex in situ feeding assay as a biomonitor of water quality: Robustness, responsiveness, and relevance. Environ. Toxicol. Chem. 21, 361–368 (2002).

    CAS  PubMed  Google Scholar 

  • 33.

    Benesh, D. P., Lafferty, K. D. & Kuris, A. A life cycle database for parasitic acanthocephalans, cestodes, and nematodes. Ecology 98, 882–882 (2017).

    PubMed  Google Scholar 

  • 34.

    Crompton, D. W. T. & Nickol, B. B. Biology of the Acanthocephala (Cambridge University Press, Cambridge, 1985).

    Google Scholar 

  • 35.

    Bakker, T. C. M., Frommen, J. G. & Thünken, T. Adaptive parasitic manipulation as exemplified by acanthocephalans. Ethology https://doi.org/10.1111/eth.12660 (2017).

    Article  Google Scholar 

  • 36.

    Bethel, W. M. & Holmes, J. C. Altered evasive behavior and responses to light in amphipods harboring acanthocephalan cystacanths. J. Parasitol. 59, 945–956 (1973).

    Google Scholar 

  • 37.

    Bauer, A., Trouvé, S., Grégoire, A., Bollache, L. & Cézilly, F. Differential influence of Pomphorhynchus laevis (Acanthocephala) on the behaviour of native and invader gammarid species. Int. J. Parasitol. 30, 1453–1457 (2000).

    CAS  PubMed  Google Scholar 

  • 38.

    Kaldonski, N., Perrot-Minnot, M.-J. & Cézilly, F. Differential influence of two acanthocephalan parasites on the antipredator behaviour of their common intermediate host. Anim. Behav. 74, 1311–1317 (2007).

    Google Scholar 

  • 39.

    McCahon, C. P., Brown, A. F. & Pascoe, D. The effect of the acanthocephalan Pomphorhynchus laevis (Müller 1776) on the acute toxicity of cadmium to its intermediate host, the amphipod Gammarus pulex (L.). Arch. Environ. Contam. Toxicol. 17, 239–243 (1988).

    CAS  Google Scholar 

  • 40.

    Médoc, V., Piscart, C., Maazouzi, C., Simon, L. & Beisel, J.-N. Parasite-induced changes in the diet of a freshwater amphipod: Field and laboratory evidence. Parasitology 138, 537–546 (2011).

    PubMed  Google Scholar 

  • 41.

    Cornet, S., Franceschi, N., Bauer, A., Rigaud, T. & Moret, Y. Immune depression induced by acanthocephalan parasites in their intermediate crustacean host: Consequences for the risk of super-infection and links with host behavioural manipulation. Int. J. Parasitol. 39, 221–229 (2009).

    CAS  PubMed  Google Scholar 

  • 42.

    Plaistow, S. J., Troussard, J.-P. & Cézilly, F. The effect of the acanthocephalan parasite Pomphorhynchus laevis on the lipid and glycogen content of its intermediate host Gammarus pulex. Int. J. Parasitol. 31, 346–351 (2001).

    CAS  PubMed  Google Scholar 

  • 43.

    Bollache, L., Rigaud, T. & Cézilly, F. Effects of two acanthocephalan parasites on the fecundity and pairing status of female Gammarus pulex (Crustacea: Amphipoda). J. Invertebr. Pathol. 79, 102–110 (2002).

    CAS  PubMed  Google Scholar 

  • 44.

    Dezfuli, B. S., Lui, A., Giovinazzo, G. & Giari, L. Effect of Acanthocephala infection on the reproductive potential of crustacean intermediate hosts. J. Invertebr. Pathol. 98, 116–119 (2008).

    CAS  PubMed  Google Scholar 

  • 45.

    Labaude, S., Cézilly, F., Tercier, X. & Rigaud, T. Influence of host nutritional condition on post-infection traits in the association between the manipulative acanthocephalan Pomphorhynchus laevis and the amphipod Gammarus pulex. Parasit. Vectors 8, 403 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 46.

    Rumpus, A. E. & Kennedy, C. R. The effect of the acanthocephalan Pomphorhynchus laevis upon the respiration of its intermediate host, Gammarus pulex. Parasitology 68, 271–284 (1974).

    CAS  PubMed  Google Scholar 

  • 47.

    Perrot-Minnot, M.-J., Kaldonski, N. & Cézilly, F. Increased susceptibility to predation and altered anti-predator behaviour in an acanthocephalan-infected amphipod. Int. J. Parasitol. 37, 645–651 (2007).

    PubMed  Google Scholar 

  • 48.

    Hindsbo, O. Effects of Polymorphus (Acanthocephala) on colour and behaviour of Gammarus lacustris. Nature 238, 333 (1972).

    ADS  Google Scholar 

  • 49.

    Dianne, L. et al. Protection first then facilitation: A manipulative parasite modulates the vulnerability to predation of its intermediate host according to its own developmental stage. Evolution 65, 2692–2698 (2011).

    PubMed  Google Scholar 

  • 50.

    Lagrue, C., Kaldonski, N., Perrot-Minnot, M.-J., Motreuil, S. & Bollache, L. Modification of hosts’ behavior by a parasite: Field evidence for adaptive manipulation. Ecology 88, 2839–2847 (2007).

    PubMed  Google Scholar 

  • 51.

    Kaldonski, N., Perrot-Minnot, M.-J., Motreuil, S. & Cézilly, F. Infection with acanthocephalans increases the vulnerability of Gammarus pulex (Crustacea Amphipoda) to non-host invertebrate predators. Parasitology 135, 627–632 (2008).

    CAS  PubMed  Google Scholar 

  • 52.

    Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. B. & Charnov, E. L. Effects of size and temperature on metabolic rate. Science 293, 2248–2251 (2001).

    ADS  CAS  PubMed  Google Scholar 

  • 53.

    Roux, C. & Roux, A. L. Température et métabolisme respiratoire d’espèces sympatriques de gammares du groupe pulex (Crustacés, Amphipodes). Ann. Limnol. 3, 3–16 (1967).

    Google Scholar 

  • 54.

    Issartel, J., Hervant, F., Voituron, Y., Renault, D. & Vernon, P. Behavioural, ventilatory and respiratory responses of epigean and hypogean crustaceans to different temperatures. Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 141, 1–7 (2005).

    PubMed  Google Scholar 

  • 55.

    Foucreau, N., Cottin, D., Piscart, C. & Hervant, F. Physiological and metabolic responses to rising temperature in Gammarus pulex (Crustacea) populations living under continental or Mediterranean climates. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 168, 69–75 (2014).

    CAS  PubMed  Google Scholar 

  • 56.

    Moenickes, S. et al. From population-level effects to individual response: Modelling temperature dependence in Gammarus pulex. J. Exp. Biol. 214, 3678–3687 (2011).

    PubMed  Google Scholar 

  • 57.

    Barber, I., Berkhout, B. W. & Ismail, Z. Thermal change and the dynamics of multi-host parasite life cycles in aquatic ecosystems. Integr. Comp. Biol. 56, 561–572 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 58.

    Olson, R. E. & Pratt, I. The life cycle and larval development of Echinorhynchus lageniformis Ekbaum, 1938 (Acanthocephala: Echinorhynchidae). J. Parasitol. 57, 143–149 (1971).

    Google Scholar 

  • 59.

    Tokeson, J. P. E. & Holmes, J. C. The effects of temperature and oxygen on the development of Polymorphus marilis (Acanthocephala) in Gammarus lacustris (Amphipoda). J. Parasitol. 68, 112–119 (1982).

    Google Scholar 

  • 60.

    Sheath, D. J., Andreou, D. & Britton, J. R. Interactions of warming and exposure affect susceptibility to parasite infection in a temperate fish species. Parasitology 143, 1340–1346 (2016).

    PubMed  Google Scholar 

  • 61.

    VanCleave, H. J. Seasonal distribution of some acanthocephala from fresh-water hosts. J. Parasitol. 2, 106–110 (1916).

    Google Scholar 

  • 62.

    Muzzall, P. M. & Rabalais, F. C. Studies on Acanthocephalus jacksoni Bullock, 1962 (Acanthocephala: Echinorhynchidae). I. Seasonal periodicity and new host records. Proc. Helminthol. Soc. Wash. 42, 31–34 (1975).

    Google Scholar 

  • 63.

    Brown, A. F. Seasonal dynamics of the acanthocephalan Pomphorhynchus laevis (Muller, 1776) in its intermediate and preferred definitive hosts. J. Fish Biol. 34, 183–194 (1989).

    Google Scholar 

  • 64.

    Rauque, C. A. & Semenas, L. Infection pattern of two sympatric acanthocephalan species in the amphipod Hyalella patagonica (Amphipoda: Hyalellidae) from Lake Mascardi (Patagonia, Argentina). Parasitol. Res. 100, 1271–1276 (2007).

    PubMed  Google Scholar 

  • 65.

    Wali, A. et al. Distribution of helminth parasites in intestines and their seasonal rate of infestation in three freshwater fishes of Kashmir. J. Parasitol. Res. https://doi.org/10.1155/2016/8901518 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • 66.

    Guinnee, M. A. & Moore, J. The effect of parasitism on host fecundity is dependent on temperature in a cockroach-acanthocephalan system. J. Parasitol. 90, 673–677 (2004).

    PubMed  Google Scholar 

  • 67.

    Benesh, D. P., Hasu, T., Seppälä, O. & Valtonen, E. T. Seasonal changes in host phenotype manipulation by an acanthocephalan: Time to be transmitted?. Parasitology 136, 219–230 (2009).

    CAS  PubMed  Google Scholar 

  • 68.

    Perrot-Minnot, M.-J., Maddaleno, M., Balourdet, A. & Cézilly, F. Host manipulation revisited: No evidence for a causal link between altered photophobia and increased trophic transmission of amphipods infected with acanthocephalans. Funct. Ecol. 26, 1007–1014 (2012).

    Google Scholar 

  • 69.

    Benesh, D. P., Duclos, L. M. & Nickol, B. B. The behavioral response of amphipods harboring Corynosoma constrictum (Acanthocephala) to various components of light. J. Parasitol. 91, 731–736 (2005).

    PubMed  Google Scholar 

  • 70.

    Dianne, L., Bollache, L., Lagrue, C., Franceschi, N. & Rigaud, T. Larval size in acanthocephalan parasites: Influence of intraspecific competition and effects on intermediate host behavioural changes. Parasit. Vectors 5, 166 (2012).

    PubMed  PubMed Central  Google Scholar 

  • 71.

    Franceschi, N. et al. Co-variation between the intensity of behavioural manipulation and parasite development time in an acanthocephalan–amphipod system. J. Evol. Biol. 23, 2143–2150 (2010).

    CAS  PubMed  Google Scholar 

  • 72.

    Perrot-Minnot, M.-J., Sanchez-Thirion, K. & Cézilly, F. Multidimensionality in host manipulation mimicked by serotonin injection. Proc. R. Soc. B Biol. Sci. 281, 20141915 (2014).

    Google Scholar 

  • 73.

    Franceschi, N., Bauer, A., Bollache, L. & Rigaud, T. The effects of parasite age and intensity on variability in acanthocephalan-induced behavioural manipulation. Int. J. Parasitol. 38, 1161–1170 (2008).

    CAS  PubMed  Google Scholar 

  • 74.

    Franceschi, N. et al. Variation between populations and local adaptation in acanthocephalan-induced parasite manipulation. Evolution 64, 2417–2430 (2010).

    PubMed  Google Scholar 

  • 75.

    Cézilly, F., Grégoire, A. & Bertin, A. Conflict between co-occuring manipulative parasites; an experimental study of the joint influence of two acanthocephalan parasites on the behaviour of Gammarus pulex. Parasitology 120, 625–630 (2000).

    PubMed  Google Scholar 

  • 76.

    Bauer, A., Haine, E. R., Perrot-Minnot, M.-J. & Rigaud, T. The acanthocephalan parasite Polymorphus minutus alters the geotactic and clinging behaviours of two sympatric amphipod hosts: the native Gammarus pulex and the invasive Gammarus roeseli. J. Zool. 267, 39–43 (2005).

    Google Scholar 

  • 77.

    Xu, Y., Castel, T., Richard, Y., Cuccia, C. & Bois, B. Burgundy regional climate change and its potential impact on grapevines. Clim. Dyn. 39, 1613–1626 (2012).

    Google Scholar 

  • 78.

    Gunn, J. & Crumley, C. L. Global energy balance and regional hydrology: A Burgundian case study. Earth Surf. Process. Landforms 16, 579–592 (1991).

    ADS  Google Scholar 

  • 79.

    Rowell, D. P. A scenario of European climate change for the late twenty-first century: Seasonal means and interannual variability. Clim. Dyn. 25, 837–849 (2005).

    Google Scholar 

  • 80.

    Bollache, L., Gambade, G. & Cézilly, F. The influence of micro-habitat segregation on size assortative pairing in Gammarus pulex (L.) (Crustacea, Amphipoda). Arch. für Hydrobiol. 147, 547–558 (2000).

    Google Scholar 

  • 81.

    Dezfuli, B. S., Zanini, N., Reggiani, G. & Rossi, R. Echinogammarus stammen (Amphipoda) as an intermediate host for Pomphorhynchus laevis (Acanthocephala) parasite of fishes from the river Brenta. Bolletino di Zool. 58, 267–271 (1991).

    Google Scholar 

  • 82.

    Dianne, L., Perrot-Minnot, M.-J., Bauer, A., Guvenatam, A. & Rigaud, T. Parasite-induced alteration of plastic response to predation threat: increased refuge use but lower food intake in Gammarus pulex infected with the acanothocephalan Pomphorhynchus laevis. Int. J. Parasitol. 44, 211–216 (2014).

    PubMed  Google Scholar 

  • 83.

    Hammond, B. A. the proboscis mechanism of Acanthocephalus ranae. J. Exp. Biol. 45, 203–213 (1966).

    Google Scholar 

  • 84.

    Taraschewski, H. Host–parasite interactions in Acanthocephala: A morphological approach. Adv. Parasitol. 46, 1–179 (2000).

    CAS  PubMed  Google Scholar 

  • 85.

    Perrot-Minnot, M.-J., Gaillard, M., Dodet, R. & Cézilly, F. Interspecific differences in carotenoid content and sensitivity to UVB radiation in three acanthocephalan parasites exploiting a common intermediate host. Int. J. Parasitol. 41, 173–181 (2011).

    CAS  PubMed  Google Scholar 

  • 86.

    Kennedy, C. R., Broughton, P. F. & Hine, P. M. The status of brown and rainbow trout, Salmo trutta and S. gairdneri as hosts of the acanthocephalan, Pomphorhynchus laevis. J. Fish Biol. 13, 265–275 (1978).

    Google Scholar 

  • 87.

    Foucreau, N., Piscart, C., Puijalon, S. & Hervant, F. Effects of rising temperature on a functional process: Consumption and digestion of leaf litter by a freshwater shredder. Fundam. Appl. Limnol./Arch. für Hydrobiol. 187, 295–306 (2016).

    Google Scholar 

  • 88.

    Noguchi, K., Gel, Y. R., Brunner, E. & Konietschke, F. nparLD: An R software package for the nonparametric analysis of longitudinal data in factorial experiments. J. Stat. Softw. 50, 1–23 (2012).

    Google Scholar 

  • 89.

    Pellan, L., Médoc, V., Renault, D., Spataro, T. & Piscart, C. Feeding choice and predation pressure of two invasive gammarids, Gammarus tigrinus and Dikerogammarus villosus, under increasing temperature. Hydrobiologia 781, 43–54 (2015).

    Google Scholar 

  • 90.

    Maure, F. et al. The cost of a bodyguard. Biol. Lett. 7, 843–846 (2011).

    PubMed  PubMed Central  Google Scholar 

  • 91.

    Maazouzi, C., Piscart, C., Legier, F. & Hervant, F. Ecophysiological responses to temperature of the ‘killer shrimp’ Dikerogammarus villosus: Is the invader really stronger than the native Gammarus pulex?. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 159, 268–274 (2011).

    CAS  PubMed  Google Scholar 

  • 92.

    Maynard, B. J., Wellnitz, T. A., Zanini, N., Wright, W. G. & Dezfuli, B. S. Parasite-altered behavior in a crustacean intermediate host: Field and laboratory studies. J. Parasitol. 84, 1102–1106 (1998).

    CAS  PubMed  Google Scholar 

  • 93.

    Dezfuli, B. S., Maynard, B. J. & Wellnitz, T. A. Activity levels and predator detection by amphipods infected with an acanthocephalan parasite, Pomphorhynchus laevis. Folia Parasitol. (Praha) 50, 129–134 (2003).

    Google Scholar 

  • 94.

    Stone, C. F. & Moore, J. Parasite-induced alteration of odour responses in an amphipod-acanthocephalan system. Int. J. Parasitol. 44, 969–975 (2014).

    CAS  PubMed  Google Scholar 

  • 95.

    Jacquin, L., Mori, Q., Pause, M., Steffen, M. & Medoc, V. Non-specific manipulation of gammarid behaviour by P. minutus parasite enhances their predation by definitive bird hosts. PLoS ONE 9, e101684 (2014).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 96.

    Thünken, T. et al. Impact of olfactory non-host predator cues on aggregation behaviour and activity in Polymorphus minutus infected Gammarus pulex. Hydrobiologia 654, 137–145 (2010).

    Google Scholar 

  • 97.

    Dianne, L. et al. Intraspecific conflict over host manipulation between different larval stages of an acanthocephalan parasite. J. Evol. Biol. 23, 2648–2655 (2010).

    CAS  PubMed  Google Scholar 

  • 98.

    Thomas, F., Brown, S. P., Sukhdeo, M. V. K. & Renaud, F. Understanding parasite strategies: A state-dependent approach?. Trends Parasitol. 18, 387–390 (2002).

    PubMed  Google Scholar 

  • 99.

    Baldauf, S. A. et al. Infection with an acanthocephalan manipulates an amphipod’s reaction to a fish predator’s odours. Int. J. Parasitol. 37, 61–65 (2007).

    PubMed  Google Scholar 

  • 100.

    Durieux, R., Rigaud, T. & Médoc, V. Parasite-induced suppression of aggregation under predation risk in a freshwater amphipod. Sociality of infected amphipods. Behav. Process. 91, 207–213 (2012).

    Google Scholar 

  • 101.

    Lewis, S. E., Hodel, A., Sturdy, T., Todd, R. & Weigl, C. Impact of acanthocephalan parasites on aggregation behavior of amphipods (Gammarus pseudolimnaeus). Behav. Process. 91, 159–163 (2012).

    Google Scholar 

  • 102.

    Labaude, S., Rigaud, T. & Cézilly, F. Host manipulation in the face of environmental changes: Ecological consequences. Int. J. Parasitol. Parasit. Wildl. 4, 442–451 (2015).

    Google Scholar 

  • 103.

    Rahmstorf, S. & Coumou, D. Increase of extreme events in a warming world. PNAS 108, 17905–17910 (2011).

    ADS  CAS  PubMed  Google Scholar 


  • Source: Ecology - nature.com

    Public health is moot without water security

    Decarbonize and diversify