in

Increasing temperatures accentuate negative fitness consequences of a marine parasite

  • 1.

    Daszak, P., Cunningham, A. A. & Hyatt, A. D. Emerging infectious diseases of wildlife: threats to biodiversity and human health. Science 287, 443–449 (2000).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 2.

    Fey, S. B. et al. Recent shifts in the occurrence, cause, and magnitude of animal mass mortality events. Proc. Natl. Acad. Sci. 112, 1083–1088 (2015).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 3.

    Fry, W. E. Principles of Plant Disease Management (Academic Press, Cambridge, 2012).

    Google Scholar 

  • 4.

    Tomley, F. M. & Shirley, M. W. Livestock infectious diseases and zoonoses. Philos. Trans. R. Soc. Lond. B Biol. Sci. (2009).

  • 5.

    Frick, W. F. et al. An emerging disease causes regional population collapse of a common North American bat species. Science 329, 679–682 (2010).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 6.

    Singh, B., Dhand, N. K. & Gill, J. Economic losses occurring due to brucellosis in Indian livestock populations. Prev. Vet. Med. 119, 211–215 (2015).

    CAS  PubMed  Article  Google Scholar 

  • 7.

    Lafferty, K. D. The ecology of climate change and infectious diseases. Ecology 90, 888–900 (2009).

    PubMed  Article  Google Scholar 

  • 8.

    Bett, B. et al. Effects of climate change on the occurrence and distribution of livestock diseases. Prev. Vet. Med. 137, 119–129 (2017).

    CAS  PubMed  Article  Google Scholar 

  • 9.

    Rohr, J. R. et al. Frontiers in climate change-disease research. Trends Ecol. Evol. 26, 270–277 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  • 10.

    Harvell, C. D. et al. Climate warming and disease risks for terrestrial and marine biota. Science 296, 2158–2162 (2002).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 11.

    Boyett, H. V., Bourne, D. G. & Willis, B. L. Elevated temperature and light enhance progression and spread of black band disease on staghorn corals of the Great Barrier Reef. Mar. Biol. 151, 1711–1720 (2007).

    Article  Google Scholar 

  • 12.

    Paillard, C., Allam, B. & Oubella, R. Effect of temperature on defense parameters in Manila clam Ruditapes philippinarum challenged with Vibrio tapetis. Dis. Aquat. Org. 59, 249–262 (2004).

    Article  Google Scholar 

  • 13.

    Dalton, S. J., Godwin, S., Smith, S. & Pereg, L. Australian subtropical white syndrome: a transmissible, temperature-dependent coral disease. Mar. Freshwat. Res. 61, 342–350 (2010).

    CAS  Article  Google Scholar 

  • 14.

    Korkut, G. G., Noonin, C. & Söderhäll, K. The effect of temperature on white spot disease progression in a crustacean Pacifastacus leniusculus. Dev. Comp. Immunol. 89, 7–13 (2018).

    PubMed  Article  Google Scholar 

  • 15.

    Verant, M. L., Boyles, J. G., Waldrep, W. Jr., Wibbelt, G. & Blehert, D. S. Temperature-dependent growth of Geomyces destructans, the fungus that causes bat white-nose syndrome. PLoS ONE 7, e46280 (2012).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 16.

    Ward, J. R., Kim, K. & Harvell, C. D. Temperature affects coral disease resistance and pathogen growth. Mar. Ecol. Prog. Ser. 329, 115–121 (2007).

    ADS  Article  Google Scholar 

  • 17.

    Albert, V. & Ransangan, J. Effect of water temperature on susceptibility of culture marine fish species to vibriosis. Int. J. Res. Pure Appl. Microbiol. 3, 48–52 (2013).

    Google Scholar 

  • 18.

    Case, R. J. et al. Temperature induced bacterial virulence and bleaching disease in a chemically defended marine macroalga. Environ. Microbiol. 13, 529–537 (2011).

    CAS  PubMed  Article  Google Scholar 

  • 19.

    Gattuso, J.-P. et al. Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios. Science 349, aac4722 (2015).

    PubMed  Article  CAS  Google Scholar 

  • 20.

    Laffoley, D. D. A. & Baxter, J. Explaining Ocean Warming: Causes, Scale, Effects and Consequences (IUCN Gland, Switzerland, 2016).

    Google Scholar 

  • 21.

    Burge, C. A. et al. Climate change influences on marine infectious diseases: implications for management and society. Annu. Rev. Mar. Sci. 6, 249–277 (2014).

    ADS  Article  Google Scholar 

  • 22.

    Miller, J. et al. Coral disease following massive bleaching in 2005 causes 60% decline in coral cover on reefs in the US Virgin Islands. Coral Reefs 28, 925 (2009).

    ADS  Article  Google Scholar 

  • 23.

    Eisenlord, M. E. et al. Ochre star mortality during the 2014 wasting disease epizootic: role of population size structure and temperature. Philos. Trans. R. Soc. Lond. B Biol. Sci 371, 20150212 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 24.

    Moore, J. D., Robbins, T. T. & Friedman, C. S. Withering syndrome in farmed red abalone Haliotis rufescens: thermal induction and association with a gastrointestinal rickettsiales-like prokaryote. J. Aquat. Anim. Health 12, 26–34 (2000).

    PubMed  Article  Google Scholar 

  • 25.

    Harvell, D., Altizer, S., Cattadori, I. M., Harrington, L. & Weil, E. Climate change and wildlife diseases: when does the host matter the most?. Ecology 90, 912–920 (2009).

    PubMed  Article  Google Scholar 

  • 26.

    Malek, J. C. & Byers, J. E. Responses of an oyster host (Crassostrea virginica) and its protozoan parasite (Perkinsus marinus) to increasing air temperature. PeerJ 6, e5046 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 27.

    Staehli, A., Schaerer, R., Hoelzle, K. & Ribi, G. Temperature induced disease in the starfish Astropecten jonstoni. Mar. Biodiv. Rec. 2, e78 (2009).

    Article  Google Scholar 

  • 28.

    Gehman, A.-L.M., Hall, R. J. & Byers, J. E. Host and parasite thermal ecology jointly determine the effect of climate warming on epidemic dynamics. Proc. Natl. Acad. Sci. 115, 744–749 (2018).

    CAS  PubMed  Article  Google Scholar 

  • 29.

    Studer, A., Thieltges, D. & Poulin, R. Parasites and global warming: net effects of temperature on an intertidal host–parasite system. Mar. Ecol. Prog. Ser. 415, 11–22 (2010).

    ADS  Article  Google Scholar 

  • 30.

    McCallum, H., Harvell, D. & Dobson, A. Rates of spread of marine pathogens. Ecol. Lett. 6, 1062–1067 (2003).

    Article  Google Scholar 

  • 31.

    Harvell, C. et al. Emerging marine diseases-climate links and anthropogenic factors. Science 285, 1505–1510 (1999).

    CAS  PubMed  Article  Google Scholar 

  • 32.

    Morton, J. P., Silliman, B. R. & Lafferty, K. D. In Marine Disease Ecology (eds D.C. Behringer, B.R. Silliman, & K.D. Lafferty) (Oxford University Press, Oxford, 2020).

  • 33.

    Lafferty, K. D. et al. Infectious diseases affect marine fisheries and aquaculture economics. Annu. Rev. Mar. Sci. 7, 471–496 (2015).

    ADS  Article  Google Scholar 

  • 34.

    Food and Agriculture Organization of the United Nations. The state of world fisheries and aquaculture. https://www.fao.org/3/i9540en/i9540en.pdf (2018).

  • 35.

    Food and Agriculture Organization of the United Nations. Global aquaculture production statistics, 1950–2017-Fisheries and Aquaculture Information and Statistics Branch. https://www.fao.org/fishery/statistics/global-aquaculture-production/query/en (2017).

  • 36.

    Abolofia, J., Asche, F. & Wilen, J. E. The cost of lice: quantifying the impacts of parasitic sea lice on farmed salmon. Mar. Resour. Econ. 32, 329–349 (2017).

    Article  Google Scholar 

  • 37.

    Jakob, E., Sweeten, T., Bennett, W. & Jones, S. Development of the salmon louse Lepeophtheirus salmonis and its effects on juvenile sockeye salmon Oncorhynchus nerka. Dis. Aquat. Org. 106, 217–227 (2013).

    CAS  Article  Google Scholar 

  • 38.

    Jones, S. R., Kim, E. & Bennett, W. Early development of resistance to the salmon louse, Lepeophtheirus salmonis (Krøyer), in juvenile pink salmon, Oncorhynchus gorbuscha (Walbaum). J. Fish Dis. 31, 591–600 (2008).

    CAS  PubMed  Article  Google Scholar 

  • 39.

    Costello, M. J. The global economic cost of sea lice to the salmonid farming industry. J. Fish Dis. 32, 115–118 (2009).

    PubMed  Article  Google Scholar 

  • 40.

    Skilbrei, O. T. & Wennevik, V. Survival and growth of sea-ranched Atlantic salmon, Salmo salar L., treated against sea lice before release. ICES J. Mar. Sci. 63, 1317–1325 (2006).

    Article  Google Scholar 

  • 41.

    Grimnes, A. & Jakobsen, P. The physiological effects of salmon lice infection on post-smolt of Atlantic salmon. J. Fish Biol. 48, 1179–1194 (1996).

    Article  Google Scholar 

  • 42.

    Krkosek, M. et al. Effects of parasites from salmon farms on productivity of wild salmon. Proc. Natl. Acad. Sci. 108, 14700–14704 (2011).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 43.

    Krkosek, M. et al. Impact of parasites on salmon recruitment in the Northeast Atlantic Ocean. Proc. Biol. Sci. 280, 20122359 (2013).

    PubMed  PubMed Central  Google Scholar 

  • 44.

    Vollset, K. W. et al. Impacts of parasites on marine survival of Atlantic salmon: a meta-analysis. Fish Fish. 17, 714–730 (2016).

    Article  Google Scholar 

  • 45.

    Bricknell, I. R., Dalesman, S. J., O’Shea, B., Pert, C. C. & Luntz, A. J. M. Effect of environmental salinity on sea lice Lepeophtheirus salmonis settlement success. Dis. Aquat. Org. 71, 201–212 (2006).

    Article  Google Scholar 

  • 46.

    Brooks, K. M. The effects of water temperature, salinity, and currents on the survival and distribution of the infective copepodid stage of sea lice (Lepeophtheirus salmonis) originating on Atlantic salmon farms in the Broughton Archipelago of British Columbia Canada. Rev. Fish. Sci. 13, 177–204 (2005).

    ADS  Article  Google Scholar 

  • 47.

    Hamre, L. A., Bui, S., Oppedal, F., Skern-Mauritzen, R. & Dalvin, S. Development of the salmon louse Lepeophtheirus salmonis parasitic stages in temperatures ranging from 3 to 24 C. Aquacult. Environ. Interact. 11, 429–443 (2019).

    Article  Google Scholar 

  • 48.

    Johnson, S. & Albright, L. Development, growth, and survival of Lepeophtheirus salmonis (Copepoda: Caligidae) under laboratory conditions. J. Mar. Biol. Assoc. U.K. 71, 425–436 (1991).

    Article  Google Scholar 

  • 49.

    Bateman, A. W. et al. Recent failure to control sea louse outbreaks on salmon in the Broughton Archipelago, British Columbia. Can. J. Fish. Aquat. Sci. 73, 1164–1172 (2016).

    Article  Google Scholar 

  • 50.

    Godwin, S. C., Krkosek, M., Reynolds, J. D. & Bateman, A. W. Sea-louse abundance on salmon farms in relation to parasite-control policy and climate change. ICES J. Mar. Sci. (In press).

  • 51.

    Jansen, P. A. et al. Sea lice as a density-dependent constraint to salmonid farming. Proc. Biol. Sci. 279, 2330–2338 (2012).

    PubMed  PubMed Central  Google Scholar 

  • 52.

    Vollset, K. W. Parasite induced mortality is context dependent in Atlantic salmon: insights from an individual-based model. Sci. Rep. 9, 1–15 (2019).

    CAS  Article  Google Scholar 

  • 53.

    Brewer-Dalton, K., Page, F. H., Chandler, P. & Ratsimandresy, A. Oceanographic conditions of salmon farming areas with attention to those factors that may influence the biology and ecology of sea lice, Lepeophtherius salmonis and Caligus spp., and their control. https://publications.gc.ca/collections/collection_2015/mpo-dfo/Fs70-5-2014-048-eng.pdf (2014).

  • 54.

    Greenan, B. J. W. et al. In Canada’s changing climate report (eds E. Bush & D.S. Lemmen) 343–423 (Government of Canada, 2018).

  • 55.

    Atlantic Canada Fish Farmers Association. 2017 New Brunswick annual sea lice management report. (2018).

  • 56.

    Atlantic Canada Fish Farmers Association. 2018 New Brunswick annual sea lice management report. (2019).

  • 57.

    Karlsen, Ø. et al. En vurdering av lakselusinfestasjonen i produksjonsområdene i 2018 og 2019. Report from Marine Research, (2020).

  • 58.

    Costello, M. J. Ecology of sea lice parasitic on farmed and wild fish. Trends Parasitol. 22, 475–483 (2006).

    PubMed  Article  Google Scholar 

  • 59.

    Best, A., White, A. & Boots, M. Maintenance of host variation in tolerance to pathogens and parasites. Proc. Natl. Acad. Sci. 105, 20786–20791 (2008).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 60.

    Handeland, S. O., Imsland, A. K. & Stefansson, S. O. The effect of temperature and fish size on growth, feed intake, food conversion efficiency and stomach evacuation rate of Atlantic salmon post-smolts. Aquaculture 283, 36–42 (2008).

    Article  Google Scholar 

  • 61.

    Alzahrani, S. M. & Ebert, P. R. Stress pre-conditioning with temperature, UV and gamma radiation induces tolerance against phosphine toxicity. PLoS ONE 13, e0195349 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 62.

    Beitinger, T. L. & Bennett, W. A. Quantification of the role of acclimation temperature in temperature tolerance of fishes. Environ. Biol. Fishes 58, 277–288 (2000).

    Article  Google Scholar 

  • 63.

    Fischer, K. et al. Environmental effects on temperature stress resistance in the tropical butterfly Bicyclus anynana. PLoS ONE 5, e15284 (2010).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 64.

    Huey, R. B. et al. Predicting organismal vulnerability to climate warming: roles of behaviour, physiology and adaptation. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 367, 1665–1679 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  • 65.

    Raffel, T. R., Halstead, N. T., McMahon, T. A., Davis, A. K. & Rohr, J. R. Temperature variability and moisture synergistically interact to exacerbate an epizootic disease. Proc. Biol. Sci. 282, 20142039 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 66.

    Studer, A. & Poulin, R. Differential effects of temperature variability on the transmission of a marine parasite. Mar. Biol. 160, 2763–2773 (2013).

    Article  Google Scholar 

  • 67.

    Aaen, S. M., Helgesen, K. O., Bakke, M. J., Kaur, K. & Horsberg, T. E. Drug resistance in sea lice: a threat to salmonid aquaculture. Trends Parasitol. 31, 72–81 (2015).

    CAS  PubMed  Article  Google Scholar 

  • 68.

    Gargan, P. et al. Evidence for sea lice-induced marine mortality of Atlantic salmon (Salmo salar) in western Ireland from experimental releases of ranched smolts treated with emamectin benzoate. Can. J. Fish. Aquat. Sci. 69, 343–353 (2012).

    CAS  Article  Google Scholar 

  • 69.

    Beamish, R., Mahnken, C. & Neville, C. Evidence that reduced early marine growth is associated with lower marine survival of coho salmon. Trans. Am. Fish. Soc. 133, 26–33 (2004).

    Article  Google Scholar 

  • 70.

    Peyronnet, A., Friedland, K., Maoileidigh, N., Manning, M. & Poole, W. Links between patterns of marine growth and survival of Atlantic salmon Salmo salar L. J. Fish Biol. 71, 684–700 (2007).

    Article  Google Scholar 

  • 71.

    Battin, J. et al. Projected impacts of climate change on salmon habitat restoration. Proc. Natl. Acad. Sci. 104, 6720–6725 (2007).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 72.

    Otero, J. et al. Basin-scale phenology and effects of climate variability on global timing of initial seaward migration of Atlantic salmon (Salmo salar). Global Change Biol. 20, 61–75 (2014).

    ADS  Article  Google Scholar 

  • 73.

    Lande, R. Risks of population extinction from demographic and environmental stochasticity and random catastrophes. Am. Nat. 142, 911–927 (1993).

    PubMed  Article  Google Scholar 

  • 74.

    Allendorf, F. W. et al. Prioritizing Pacific salmon stocks for conservation. Conserv. Biol. 11, 140–152 (1997).

    Article  Google Scholar 

  • 75.

    Chaput, G. Overview of the status of Atlantic salmon (Salmo salar) in the North Atlantic and trends in marine mortality. ICES J. Mar. Sci. 69, 1538–1548 (2012).

    Article  Google Scholar 

  • 76.

    Nehlsen, W., Williams, J. E. & Lichatowich, J. A. Pacific salmon at the crossroads: stocks at risk from California, Oregon, Idaho, and Washington. Fisheries 16, 4–21 (1991).

    Article  Google Scholar 

  • 77.

    Parrish, D. L., Behnke, R. J., Gephard, S. R., McCormick, S. D. & Reeves, G. H. Why aren’t there more Atlantic salmon (Salmo salar)?. Can. J. Fish. Aquat. Sci. 55, 281–287 (1998).

    Article  Google Scholar 

  • 78.

    Groner, M. L. et al. Managing marine disease emergencies in an era of rapid change. Philos. Trans. R. Soc. Lond. B Biol. 371, 20150364 (2016).

    Article  CAS  Google Scholar 

  • 79.

    Altizer, S., Ostfeld, R. S., Johnson, P. T., Kutz, S. & Harvell, C. D. Climate change and infectious diseases: from evidence to a predictive framework. Science 341, 514–519 (2013).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 80.

    Columbia Basin Fish and Wildlife Authority PIT Tag Steering Committee. PIT tag marking procedures manual. Columbia Basin Fish and Wildlife Authority, Portland, Oregon, (1999).

  • 81.

    Poley, J. D. et al. High level efficacy of lufenuron against sea lice (Lepeophtheirus salmonis) linked to rapid impact on moulting processes. Int. J. Parasitol. Drugs Drug Res. 8, 174–188 (2018).

    Article  Google Scholar 

  • 82.

    Whyte, S. et al. iAvermectin treatment for Lepeophtheirus salmonis: impacts on host (Salmo salar) and parasite immunophysiology. Aquaculture 501, 488–501 (2019).

    CAS  Article  Google Scholar 

  • 83.

    Groner, M. L., Gettinby, G., Stormoen, M., Revie, C. W. & Cox, R. Modelling the impact of temperature-induced life history plasticity and mate limitation on the epidemic potential of a marine ectoparasite. PLoS ONE 9, e88465 (2014).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 84.

    Chezik, K. A., Lester, N. P. & Venturelli, P. A. Fish growth and degree-days I: selecting a base temperature for a within-population study. Can. J. Fish. Aquat. Sci. 71, 47–55 (2013).

    Article  Google Scholar 

  • 85.

    Neuheimer, A. B. & Grønkjær, P. Climate effects on size-at-age: growth in warming waters compensates for earlier maturity in an exploited marine fish. Global Change Biol. 18, 1812–1822 (2012).

    ADS  Article  Google Scholar 

  • 86.

    Jonsson, N., Jonsson, B. & Hansen, L. P. Does climate during embryonic development influence parr growth and age of seaward migration in Atlantic salmon (Salmo salar)?. Can. J. Fish. Aquat. Sci. 62, 2502–2508 (2005).

    Article  Google Scholar 

  • 87.

    Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control 19, 716–723 (1974).

    ADS  MathSciNet  MATH  Article  Google Scholar 

  • 88.

    Le Cren, E. The length-weight relationship and seasonal cycle in gonad weight and condition in the perch (Perca fluviatilis). J. Anim. Ecol. 201–219, (1951).

  • 89.

    Hurvich, C. M. & Tsai, C.-L. Regression and time series model selection in small samples. Biometrika 76, 297–307 (1989).

    MathSciNet  MATH  Article  Google Scholar 

  • 90.

    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria (2019).

  • 91.

    Pinheiro J, Bates D, DebRoy S, Sarkar D & R Core Team. nlme: linear and nonlinear mixed effects models. R package version 3.1-139 (2019).

  • 92.

    Therneau, T. M. coxme: mixed effects Cox models. R package 2.2-14 (2019).


  • Source: Ecology - nature.com

    The future of Arctic sea-ice biogeochemistry and ice-associated ecosystems

    A sciaenid swim bladder with long skinny fingers produces sound with an unusual frequency spectrum