in

Inferred genetic architecture underlying evolution in a fossil stickleback lineage

  • 1.

    Bell, M. A., Baumgartner, J. V. & Olson, E. C. Patterns of temporal change in single morphological characters of a Miocene stickleback fish. Paleobiology 11, 258–271 (1985).

    Google Scholar 

  • 2.

    Bell, M. A. Implications of a fossil stickleback assemblage for Darwinian gradualism. J. Fish. Biol. 75, 1977–1999 (2009).

    CAS  PubMed  Google Scholar 

  • 3.

    Bell, M. A., Travis, M. P. & Blouw, D. M. Inferring natural selection in a fossil threespine stickleback. Paleobiology 32, 562–577 (2006).

    Google Scholar 

  • 4.

    Hunt, G., Bell, M. A. & Travis, M. P. Evolution toward a new adaptive optimum: phenotypic evolution in a fossil stickleback lineage. Evolution 62, 700–710 (2008).

    PubMed  Google Scholar 

  • 5.

    Klepaker, T., Østbye, K. & Bell, M. A. Regressive evolution of the pelvic complex in stickleback fishes: a study of convergent evolution. Evol. Ecol. Res. 15, 413–435 (2013).

    Google Scholar 

  • 6.

    Bell, M. A., Ortí, G., Walker, J. A. & Koenings, J. P. Evolution of pelvic reduction in threespine stickleback fish: a test of competing hypotheses. Evolution 47, 906–914 (1993).

    PubMed  Google Scholar 

  • 7.

    Chan, Y. F. et al. Adaptive evolution of pelvic reduction in sticklebacks by recurrent deletion of a Pitx1 enhancer. Science 327, 302–305 (2010).

    CAS  PubMed  Google Scholar 

  • 8.

    Cole, N. J., Tanaka, M., Prescott, A. & Tickle, C. Expression of limb initiation genes and clues to the morphological diversification of threespine stickleback. Curr. Biol. 13, R951–R952 (2003).

    CAS  PubMed  Google Scholar 

  • 9.

    Shapiro, M. D. et al. Genetic and developmental basis of evolutionary pelvic reduction in threespine sticklebacks. Nature 428, 717–723 (2004).

    CAS  PubMed  Google Scholar 

  • 10.

    Cresko, W. A. et al. Parallel genetic basis for repeated evolution of armor loss in Alaskan threespine stickleback populations. Proc. Natl Acad. Sci. USA 101, 6050–6055 (2004).

    CAS  PubMed  Google Scholar 

  • 11.

    Coyle, S. M., Huntingford, F. A. & Peichel, C. L. Parallel evolution of Pitx1 underlies pelvic reduction in Scottish threespine stickleback (Gasterosteus aculeatus). J. Hered. 98, 581–586 (2007).

    CAS  PubMed  Google Scholar 

  • 12.

    Xie, K. T. et al. DNA fragility in the parallel evolution of pelvic reduction in stickleback fish. Science 363, 81–84 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 13.

    Bell, M. A., Khalef, V. & Travis, M. P. Directional asymmetry of pelvic vestiges in threespine stickleback. J. Exp. Zool. B Mol. Dev. Evol. 308B, 189–199 (2007).

    Google Scholar 

  • 14.

    Palmer, A. R. Symmetry breaking and the evolution of development. Science 306, 828–833 (2004).

    CAS  PubMed  Google Scholar 

  • 15.

    Marcil, A., Dumontier, É., Chamberland, M., Camper, S. A. & Drouin, J. Pitx1 and Pitx2 are required for development of hindlimb buds. Development 130, 45–55 (2003).

    CAS  PubMed  Google Scholar 

  • 16.

    Shapiro, M. D., Bell, M. A. & Kingsley, D. M. Parallel genetic origins of pelvic reduction in vertebrates. Proc. Natl Acad. Sci. USA 103, 13753–13758 (2006).

    CAS  PubMed  Google Scholar 

  • 17.

    Bell, M. A. in The Evolutionary Biology of the Threespine Stickleback (eds Bell, M. A. & Foster, S. A.) 438–471 (Oxford Univ. Press, 1994).

  • 18.

    Peichel, C. L. et al. The genetic architecture of divergence between threespine stickleback species. Nature 414, 901–905 (2001).

    CAS  PubMed  Google Scholar 

  • 19.

    Rollins, J. L., Lohman, B. K. & Bell, M. A. Does ion limitation select for pelvic reduction in threespine stickleback (Gasterosteus aculeatus)? Evol. Ecol. Res. 16, 101–120 (2014).

    Google Scholar 

  • 20.

    Reimchen, T. E. Spine deficiency and polymorphism in a population of Gasterosteus aculeatus: an adaptation to predators? Can. J. Zool. 58, 1232–1244 (1980).

    Google Scholar 

  • 21.

    Reimchen, T. E. in The Evolutionary Biology of the Threespine Stickleback (eds Bell, M. A. & Foster, S. A.) 240–276 (Oxford Univ. Press, 1994).

  • 22.

    Hoogland, R., Morris, D. & Tinbergen, N. The spines of sticklebacks (Gasterosteus and Pygosteus) as a means of defense against predators (Perca and Esox). Behaviour 10, 205–236 (1956).

    Google Scholar 

  • 23.

    Baumgartner, J. V. A new fossil ictalurid catfish from the Miocene middle member of the Truckee Formation, Nevada. Copeia 1982, 38–46 (1982).

    Google Scholar 

  • 24.

    Stearley, R. F. & Smith, G. R. Fishes of the Mio-Pliocene western snake river plain and vicinity. Misc. Publ. Mus. Zool. Univ. Mich. 204, 1–43 (2016).

    Google Scholar 

  • 25.

    Baker, J. A. in The Evolutionary Biology of the Threespine Stickleback (eds Bell, M. A. & Foster, S. A.) 144–187 (Oxford Univ. Press, 1994).

  • 26.

    Bell, M. A. Interacting evolutionary constraints in pelvic reduction of threespine sticklebacks, Gasterosteus aculeatus (Pisces, Gasterosteidae). Biol. J. Linn. Soc. Lond. 31, 347–382 (1987).

    Google Scholar 

  • 27.

    Bell, M. A. & Harris, E. I. Developmental osteology of the pelvic complex of Gasterosteus aculeatus. Copeia 1985, 789–792 (1985).

    Google Scholar 

  • 28.

    Schmid, L. & Sánchez-Villagra, M. R. Potential genetic bases of morphological evolution in the Triassic fish Saurichthys. J. Exp. Zool. B Mol. Dev. Evol. 314B, 519–526 (2010).

    Google Scholar 

  • 29.

    Meredith, R. W., Gatesy, J., Murphy, W. J., Ryder, O. A. & Springer, M. S. Molecular decay of the tooth gene Enamelin (ENAM) mirrors the loss of enamel in the fossil record of placental mammals. PLoS Genet. 5, e1000634 (2009).

    PubMed  PubMed Central  Google Scholar 

  • 30.

    Qu, Q., Haitina, T., Zhu, M. & Ahlberg, P. E. New genomic and fossil data illuminate the origin of enamel. Nature 526, 108–111 (2015).

    CAS  PubMed  Google Scholar 

  • 31.

    Zhu, M. et al. A Silurian placoderm with osteichthyan-like marginal jaw bones. Nature 502, 188–193 (2013).

    CAS  PubMed  Google Scholar 

  • 32.

    Zhu, M. Bone gain and loss: insights from genomes and fossils. Natl Sci. Rev. 1, 490–492 (2014).

    CAS  Google Scholar 

  • 33.

    Hunt, G. Evolutionary divergence in directions of high phenotypic variance in the ostracode genus Poseidonamicus. Evolution 61, 1560–1576 (2007).

    PubMed  Google Scholar 

  • 34.

    Thompson, J. R. et al. Reorganization of sea urchin gene regulatory networks at least 268 million years ago as revealed by oldest fossil cidaroid echinoid. Sci. Rep. 5, 15541 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 35.

    Organ, C. L., Janes, D. E., Meade, A. & Pagel, M. Genotypic sex determination enabled adaptive radiations of extinct marine reptiles. Nature 461, 389–392 (2009).

    CAS  Google Scholar 

  • 36.

    Organ, C. L., Shedlock, A. M., Meade, A., Pagel, M. & Edwards, S. V. Origin of avian genome size and structure in non-avian dinosaurs. Nature 446, 180–184 (2007).

    CAS  PubMed  Google Scholar 

  • 37.

    Organ, C. L. & Shedlock, A. M. Palaeogenomics of pterosaurs and the evolution of small genome size in flying vertebrates. Biol. Lett. 5, 47–50 (2009).

    PubMed  Google Scholar 

  • 38.

    Conte, G. L., Arnegard, M. E., Peichel, C. L. & Schluter, D. The probability of genetic parallelism and convergence in natural populations. Proc. Biol. Sci. 279, 5039–5047 (2012).

    PubMed  PubMed Central  Google Scholar 

  • 39.

    Rennison, D. J., Stuart, Y. E., Bolnick, D. I. & Peichel, C. L. Ecological factors and morphological traits are associated with repeated genomic differentiation between lake and stream stickleback. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 374, 20180241 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 40.

    Szeto, D. P. et al. Role of the Bicoid-related homeodomain factor Pitx1 in specifying hindlimb morphogenesis and pituitary development. Genes Dev. 13, 484–494 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 41.

    Thompson, A. C. et al. A novel enhancer near the Pitx1 gene influences development and evolution of pelvic appendages in vertebrates. eLife 7, e38555 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 42.

    Bell, M. A., Stewart, J. D. & Park, P. J. The world’s oldest fossil threespine stickleback fish. Copeia 2009, 256–265 (2009).

    Google Scholar 

  • 43.

    Rawlinson, S. E. & Bell, M. A. A stickleback fish (Pungitius) from the Neogene Sterling Formation, Kenai Peninsula, Alaska. J. Paleontol. 56, 583–588 (1982).

    Google Scholar 

  • 44.

    Rohlf, F. J. tpsDIG v.2.10 (2006).

  • 45.

    Bowne, P. S. in The Evolutionary Biology of the Threespine Stickleback (eds Bell, M. A. & Foster, S. A.) 28–60 (Oxford Univ. Press, 1994).

  • 46.

    R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).

  • 47.

    Lleonart, J., Salat, J. & Torres, G. J. Removing allometric effects of body size in morphological analysis. J. Theor. Biol. 205, 85–93 (2000).

    CAS  PubMed  Google Scholar 

  • 48.

    Oke, K. B. et al. Does plasticity enhance or dampen phenotypic parallelism? A test with three lake-stream stickleback pairs. J. Evol. Biol. 29, 126–143 (2016).

    CAS  PubMed  Google Scholar 

  • 49.

    Stuart, Y. E. et al. Contrasting effects of environment and genetics generate a continuum of parallel evolution. Nat. Ecol. Evol. 1, 0158 (2017).

    Google Scholar 

  • 50.

    Hartigan, J. A. & Hartigan, P. M. The dip test of unimodality. Ann. Stat. 13, 70–84 (1985).

    Google Scholar 

  • 51.

    Maechler, M. diptest: Hartigan’s dip statistic for unimodality—corrected v.0.75-7 (2016); https://rdrr.io/cran/diptest/


  • Source: Ecology - nature.com

    MIT News – Food | Water

    Increasing the broad-leaved tree fraction in European forests mitigates hot temperature extremes