in

Influence of oil, dispersant, and pressure on microbial communities from the Gulf of Mexico

  • 1.

    Atlas, R. M. & Hazen, T. C. Oil biodegradation and bioremediation: A tale of the two worst spills in u.s. history. Environmental Science & Technology 45, 6709–6715, https://doi.org/10.1021/es2013227 (2011).

  • 2.

    McNutt, M. K. et al. Applications of science and engineering to quantify and control the Deepwater Horizon oil spill. Proceedings of the National Academy of Sciences 109, 20222–20228, https://doi.org/10.1073/pnas.1214389109 (2012).

  • 3.

    Camilli, R. et al. Tracking hydrocarbon plume transport and biodegradation at Deepwater Horizon. Science 330, 201–204, https://doi.org/10.1126/science.1195223 (2010).

  • 4.

    Ryerson, T. B. et al. Chemical data quantifyDeepwater Horizon hydrocarbon flow rate and environmental distribution. Proceedings of the National Academy of Sciences 109, 20246–20253, https://doi.org/10.1073/pnas.1110564109 (2012).

  • 5.

    Joye, S. B. Deepwater Horizon, 5 years on. Science 349, 592–593, https://doi.org/10.1126/science.aab4133 (2015).

  • 6.

    Romero, I. C. et al. Hydrocarbons in deep-sea sediments following the 2010 Deepwater Horizon blowout in the northeast gulf of mexico. PLoS ONE 10, e0128371, https://doi.org/10.1371/journal.pone.0128371 (2015).

  • 7.

    Daly, K. L., Passow, U., Chanton, J. & Hollander, D. Assessing the impacts of oil-associated marine snow formation and sedimentation during and after theDeepwater Horizon oil spill. Anthropocene 13, 18–33, https://doi.org/10.1016/j.ancene.2016.01.006 (2016).

    • Article
    • Google Scholar
  • 8.

    Redmond, M. C. & Valentine, D. L. Natural gas and temperature structured a microbial community response to the Deepwater Horizon oil spill. Proceedings of the National Academy of Sciences 109, 20292–20297, https://doi.org/10.1073/pnas.1108756108 (2012).

  • 9.

    Hazen, T. C., Prince, R. C. & Mahmoudi, N. Marine oil biodegradation. Environmental Science & Technology 50, 2121–2129, https://doi.org/10.1021/acs.est.5b03333 (2016).

  • 10.

    Dubinsky, E. A. et al. Succession of hydrocarbon-degrading bacteria in the aftermath of the Deepwater Horizon oil spill in the gulf of mexico. Environmental Science & Technology 47, 10860–10867, https://doi.org/10.1021/es401676y (2013).

  • 11.

    Kostka, J. E. et al. Hydrocarbon-degrading bacteria and the bacterial community response in gulf of mexico beach sands impacted by the Deepwater Horizon oil spill. Applied and Environmental Microbiology 77, 7962–7974, https://doi.org/10.1128/aem.05402-11 (2011).

  • 12.

    Liu, Z. & Liu, J. Evaluating bacterial community structures in oil collected from the sea surface and sediment in the northern gulf of mexico after the Deepwater Horizon oil spill. MicrobiologyOpen 2, 492–504, https://doi.org/10.1002/mbo3.89 (2013).

  • 13.

    Crespo-Medina, M. et al. The rise and fall of methanotrophy following a deepwater oil-well blowout. Nature Geoscience 7, 423–427, https://doi.org/10.1038/ngeo2156 (2014).

  • 14.

    Kimes, N. E. et al. Metagenomic analysis and metabolite profiling of deep-sea sediments from the gulf of mexico following theDeepwater Horizon oil spill. Frontiers in Microbiology 4, https://doi.org/10.3389/fmicb.2013.00050 (2013).

  • 15.

    Techtmann, S. M. et al. Corexit 9500 enhances oil biodegradation and changes active bacterial community structure of oil-enriched microcosms. Applied and Environmental Microbiology 83, https://doi.org/10.1128/aem.03462-16 (2017).

  • 16.

    Kleindienst, S. et al. Chemical dispersants can suppress the activity of natural oil-degrading microorganisms. Proceedings of the National Academy of Sciences 112, https://doi.org/10.1073/pnas.1507380112 (2015).

  • 17.

    Margesin, R. & Schinner, F. Biodegradation and bioremediation of hydrocarbons in extreme environments. Applied Microbiology and Biotechnology 56, 650–663, https://doi.org/10.1007/s002530100701 (2001).

  • 18.

    Scoma, A., Barbato, M., Borin, S., Daffonchio, D. & Boon, N. An impaired metabolic response to hydrostatic pressure explains alcanivorax borkumensis recorded distribution in the deep marine water column. Scientific Reports 6, 31316, https://doi.org/10.1038/srep31316 (2016).

  • 19.

    Marietou, A. et al. The effect of hydrostatic pressure on enrichments of hydrocarbon degrading microbes from the gulf of mexico following the Deepwater Horizon oil spill. Frontiers in Microbiology 9, https://doi.org/10.3389/fmicb.2018.00808 (2018).

  • 20.

    Prince, R. C., Nash, G. W. & Hill, S. J. The biodegradation of crude oil in the deep ocean. Marine Pollution Bulletin 111, 354–357, https://doi.org/10.1016/j.marpolbul.2016.06.087 (2016).

  • 21.

    Schedler, M., Hiessl, R., Valladares Juarez, A., Gust, G. & Muller, R. Effect of high pressure on hydrocarbon-degrading bacteria. AMB Express 4, 77 (2014).

    • Article
    • Google Scholar
  • 22.

    Nguyen, U. T. et al. The influence of pressure on crude oil biodegradation in shallow and deep gulf of mexico sediments. PLOS ONE 13, e0199784, https://doi.org/10.1371/journal.pone.0199784 (2018).

  • 23.

    Overholt, W. A. et al. Hydrocarbon degrading bacteria exhibit a species specific response to dispersed oil while moderating ecotoxicity. Applied and Environmental Microbiology https://doi.org/10.1128/aem.02379-15 (2015).

  • 24.

    Bælum, J. et al. Deep-sea bacteria enriched by oil and dispersant from the Deepwater Horizon spill. Environmental Microbiology 14, 2405–2416, https://doi.org/10.1111/j.1462-2920.2012.02780.x (2012).

  • 25.

    Chakraborty, R., Borglin, S. E., Dubinsky, E. A., Andersen, G. L. &Hazen, T. C. Microbial response to the mc252 oil and corexit 9500 in the gulf of mexico. Frontiers in Microbiology 3, https://doi.org/10.3389/fmicb.2012.00357 (2012).

  • 26.

    Perez Calderon, L. J. et al. Bacterial community response in deep faroe-shetland channel sediments following hydrocarbon entrainment with and without dispersant addition. Frontiers in Marine Science 5, https://doi.org/10.3389/fmars.2018.00159 (2018).

  • 27.

    Bacosa, H. P. et al. Hydrocarbon degradation and response of seafloor sediment bacterial community in the northern gulf of mexico to light louisiana sweet crude oil. The ISME journal 12, 2532–2543, https://doi.org/10.1038/s41396-018-0190-1 (2018).

  • 28.

    Hackbusch, S. et al. Influence of pressure and dispersant on oil biodegradation by a newly isolated Rhodococcus strain from deep-sea sediments of the gulf of mexico. Marine Pollution Bulletin 110683, https://doi.org/10.1016/j.marpolbul.2019.110683 (2019).

  • 29.

    Peoples, L. M. et al. Microbial community diversity within sediments from two geographically separated hadal trenches. Frontiers in Microbiology 10, https://doi.org/10.3389/fmicb.2019.00347 (2019).

  • 30.

    Underwood, G. J. C. et al. Organic matter from arctic sea-ice loss alters bacterial community structure and function. Nature Climate Change 9, 170–176, https://doi.org/10.1038/s41558-018-0391-7 (2019).

  • 31.

    Valentine, D. L. et al. Propane respiration jump-starts microbial response to a deep oil spill. Science 330, 208–211, https://doi.org/10.1126/science.1196830 (2010).

  • 32.

    Mason, O. U. et al. Metagenomics reveals sediment microbial community response to Deepwater Horizon oil spill. The ISME journal 8, 1464–1475, https://doi.org/10.1038/ismej.2013.254 (2014).

  • 33.

    Yang, T. et al. Distinct bacterial communities in surficial seafloor sediments following the 2010 Deepwater Horizon blowout. Frontiers in Microbiology 7, https://doi.org/10.3389/fmicb.2016.01384 (2016).

  • 34.

    Satomi, M. The Family Shewanellaceae, 597–625 (Springer Berlin Heidelberg, Berlin, Heidelberg, 2014).

  • 35.

    Gentile, G., Bonasera, V., Amico, C., Giuliano, L. & Yakimov, M. Shewanella sp. ga-22, a psychrophilic hydrocarbonoclastic antarctic bacterium producing polyunsaturated fatty acids. Journal of Applied Microbiology 95, 1124–1133, https://doi.org/10.1046/j.1365-2672.2003.02077.x (2003).

  • 36.

    Bagi, A., Pampanin, D. M., Lanzén, A., Bilstad, T. & Kommedal, R. Naphthalene biodegradation in temperate and arctic marine microcosms. Biodegradation 25, 111–125, https://doi.org/10.1007/s10532-013-9644-3 (2014).

  • 37.

    Ferguson, R. M. W., Gontikaki, E., Anderson, J. A. & Witte, U. The variable influence of dispersant on degradation of oil hydrocarbons in subarctic deep-sea sediments at low temperatures (0–5°c). Scientific Reports 7, 2253, https://doi.org/10.1038/s41598-017-02475-9 (2017).

  • 38.

    Bartlett, D. H. Pressure effects on in vivo microbial processes. Biochimica et Biophysica Acta (BBA) – Protein Structure and Molecular Enzymology 1595, 367–381, https://doi.org/10.1016/S0167-4838(01)00357-0 (2002).

  • 39.

    Xu, Y. et al. Moritella profunda sp. nov. and Moritella abyssi sp. nov., two psychropiezophilic organisms isolated from deep atlantic sediments. International Journal of Systematic and Evolutionary Microbiology 53, 533–538, https://doi.org/10.1099/ijs.0.02228-0 (2003).

  • 40.

    Kujawinski, E. B. et al. Fate of dispersants associated with the Deepwater Horizon oil spill. Environmental Science & Technology 45, 1298–1306, https://doi.org/10.1021/es103838p (2011).

  • 41.

    Liu, J., Sun, Y.-W., Li, S.-N. & Zhang, D.-C. Thalassotalea profundi sp. nov. isolated from a deep-sea seamount. International Journal of Systematic and Evolutionary Microbiology 67, 3739–3743, https://doi.org/10.1099/ijsem.0.002180 (2017).

  • 42.

    Stelling, S. C. et al. Draft genome sequence ofThalassotalea sp. strain nd16a isolated from eastern mediterranean sea water collected from a depth of 1,055 meters. Genome announcements 2, e01231–14, https://doi.org/10.1128/genomeA.01231-14 (2014).

  • 43.

    Lindstrom, J. E. & Braddock, J. F. Biodegradation of petroleum hydrocarbons at low temperature in the presence of the dispersant corexit 9500. Marine Pollution Bulletin 44, 739–747, https://doi.org/10.1016/S0025-326X(02)00050-4 (2002).

  • 44.

    Geiselbrecht, A. D. Cycloclasticus, 1–6 (John Wiley & Sons, Ltd, 2015).

  • 45.

    White, H. K. et al. Long-term persistence of dispersants following the Deepwater Horizon oil spill. Environmental Science & Technology Letters 1, 295–299, https://doi.org/10.1021/ez500168r (2014).

  • 46.

    Muyzer, G., de Waal, E. C. & Uitterlinden, A. G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16s rrna. Applied and Environmental Microbiology 59, 695–700 (1993).

  • 47.

    Klindworth, A. et al. Evaluation of general 16s ribosomal rna gene pcr primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Research 41, e1–e1, https://doi.org/10.1093/nar/gks808 (2013).

  • 48.

    Callahan, B. J. et al. Dada2: High-resolution sample inference from illumina amplicon data. Nature Methods 13, 581–583, https://doi.org/10.1038/nmeth.3869 (2016).

  • 49.

    Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using quime 2. Nature Biotechnology 37, 852–7, https://doi.org/10.1038/s41587-019-0209-9 (2019).

  • 50.

    Pedregosa, F. et al. Scikit-learn: Machine learning in python. Journal of Machine Learning Research 12, 2825–2830 (2011).

  • 51.

    Quast, C. et al. The silva ribosomal rna gene database project: improved data processing and web-based tools. Nucleic Acids Research 41, D590–D596, https://doi.org/10.1093/nar/gks1219 (2013).

  • 52.

    Bokulich, N. A. et al. Optimizing taxonomic classification of marker-gene amplicon sequences with qiime 2’s q2-feature-classifier plugin. Microbiome 6, 90, https://doi.org/10.1186/s40168-018-0470-z (2018).

  • 53.

    Werner, J. J. et al. Impact of training sets on classification of high-throughput bacterial 16s rrna gene surveys. The ISME journal 6, 94–103, https://doi.org/10.1038/ismej.2011.82 (2012). 

  • 54.

    McMurdie, P. J. & Holmes, S. phyloseq: An r package for reproducible interactive analysis and graphics of microbiome census data. PLOS ONE 8, e61217, https://doi.org/10.1371/journal.pone.0061217 (2013).

  • 55.

    R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2013).

  • 56.

    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer Publishing Company, Incorporated, 2009).

  • 57.

    Oksanen, J. et al. vegan: Community Ecology Package. R package version 2, 4–6 (2018).

    • Google Scholar
  • 58.

    Jiang, L. et al. Discrete false-discovery rate improves identification of differentially abundant microbes. mSystems 2, https://doi.org/10.1128/mSystems.00092-17 (2017).

  • 59.

    Heberle, H., Meirelles, G. V., da Silva, F. R., Telles, G. P. & Minghim, R. Interactivenn: a web-based tool for the analysis of sets through venn diagrams. BMC Bioinformatics 16, 169, https://doi.org/10.1186/s12859-015-0611-3 (2015).


  • Source: Ecology - nature.com

    Associate Professor Amy Moran-Thomas receives the 2020 Levitan Prize in the Humanities

    Engineers develop precision injection system for plants