Barlow, J. et al. The future of hyperdiverse tropical ecosystems. Nature 559, 517–526. https://doi.org/10.1038/s41586-018-0301-1 (2018).
Stork, N. E. How many species of insects and other terrestrial arthropods are there on earth?. Annu. Rev. Entomol. 63, 31–45 (2018).
Rahbek, C. et al. Humboldt’s enigma: What causes global patterns of mountain biodiversity?. Science 365, 1108–1113. https://doi.org/10.1126/science.aax0149 (2019).
Basset, Y. et al. Arthropod diversity in a tropical forest. Science 338, 1481–1484. https://doi.org/10.1126/science.1226727 (2012).
Erwin, T. L. Tropical forests: Their richness in Coleoptera and other arthropod species. Coleopterists Bull. 36(1), 74–75 (1982).
Sprick, P. & Floren, A. Diversity of Curculionoidea in humid rain forest canopies of Borneo: A taxonomic blank spot. Diversity 10, 116 (2018).
Watson, J. E. M. et al. The exceptional value of intact forest ecosystems. Nat. Ecol. Evolut. 2, 599–610. https://doi.org/10.1038/s41559-018-0490-x (2018).
Hammond, P. M. in Insects and the Rain Forest of South East Asia (Wallacea) (eds W. J. Knight & J. D. Holloway) 197–252 (Royal Entomological Society of London, 1990).
Socolar, J. B., Gilroy, J. J., Kunin, W. E. & Edwards, D. P. How should beta-diversity inform biodiversity conservation?. Trends Ecol. Evol. 31, 67–80. https://doi.org/10.1016/j.tree.2015.11.005 (2016).
Novotny, V. et al. Low beta diversity of herbivorous insects in tropical forests. Nature 448, 692–697 (2007).
Thormann, B. et al. Small-scale topography modulates elevational α-, β- and γ-diversity of Andean leaf beetles. Oecologia 187, 181–189. https://doi.org/10.1007/s00442-018-4108-4 (2018).
12Allison, A., Samuelson, G. A. & Miller, S. E. in Canopy Arthropods (eds N.E. Stork, J. Adis, & R.K. Didham) 237–265 (Chapman & Hall, 1997).
Mupepele, A.-C., Müller, T., Dittrich, M. & Floren, A. Are temperate canopy spiders tree-species specific?. PLoS ONE 9, e86571. https://doi.org/10.1371/journal.pone.0086571 (2014).
Ratnasingham, S. & Hebert, P. D. N. A DNA-based registry for all animal species: The Barcode Index Number (BIN) system. PLoS ONE 8, e66213. https://doi.org/10.1371/journal.pone.0066213 (2013).
15Miller, S. E., Hausmann, A., Hallwachs, W. & Janzen, D. H. Advancing taxonomy and bioinventories with DNA barcodes. Philos. Trans. R. Soc. B Biol. Sci.371, https://doi.org/10.1098/rstb.2015.0339 (2016).
D’Souza, M. L. & Hebert, P. D. N. Stable baselines of temporal turnover underlie high beta diversity in tropical arthropod communities. Mol. Ecol. 27, 2447–2460. https://doi.org/10.1111/mec.14693 (2018).
Floren, A. & Linsenmair, K. E. in Arthropods of Tropical Forests: Spatio-Temporal Dynamics and Resource Use in the Canopy (eds Y. Basset, V. Novotny, S. Miller, & R. Kitching) 190–197 (Cambridge University Press, 2003).
Gill, B. A. et al. Cryptic species diversity reveals biogeographic support for the “mountain passes are higher in the tropics” hypothesis. Proc. R. Soc. B Biol. Sci. 283, 20160553. https://doi.org/10.1098/rspb.2016.0553 (2016).
Schmidt, S., Schmid-Egger, C., Morinière, J., Haszprunar, G. & Hebert, P. D. DNA barcoding largely supports 250 years of classical taxonomy: Identifications for Central European bees (Hymenoptera, Apoidea partim). Mol. Ecol. Resour. 15, 985–1000. https://doi.org/10.1111/1755-0998.12363 (2015).
García-Robledo, C., Kuprewicz, E. K., Staines, C. L., Erwin, T. L. & Kress, W. J. Limited tolerance by insects to high temperatures across tropical elevational gradients and the implications of global warming for extinction. Proc. Natl. Acad. Sci. U.S.A. 113, 680–685. https://doi.org/10.1073/pnas.1507681113 (2016).
Ghalambor, C. K., Huey, R. B., Martin, P. R., Tewksbury, J. J. & Wang, G. Are mountain passes higher in the tropics? Janzen’s hypothesis revisited. Integr. Comp. Biol. 46, 5–17. https://doi.org/10.1093/icb/icj003 (2006).
Janzen, D. H. Why mountain passes are higher in the tropics. Am. Nat. 101, 233–249. https://doi.org/10.1086/282487 (1967).
de Bruyn, M. et al. Borneo and Indochina are major evolutionary hotspots for Southeast Asian biodiversity. Syst. Biol. 63, 879–901, https://doi.org/10.1093/sysbio/syu047 (2014).
Laurance, W. F., Sayer, J. & Cassman, K. G. Agricultural expansion and its impact on tropical nature. Trends Ecol. Evol. 29, 107–116. https://doi.org/10.1016/j.tree.2013.12.001 (2014).
Carolyn, R. D., Baskoro, D. P. T. & Prasetyo, L. B. Analisis Degradasi Untuk Penyususnan Arahan Strategi Pengendaliannya Di Taman Nasional Gunung Halimun Salak Provinsi Jawa Barat. Globe 15, 39–47 (2013).
Priyadi, H. et al.Five Hundred Plant Species in Gunung Halimun Salak National Park, West Java: A Checklist Including Sundanese Names, Distribution and Use (2010).
Floren, A. in Manual on Field Recording Techniques and Protocols for All Taxa Biodiversity Inventories ABC Taxa Vol. Part 1 (eds J. Eymann, J. Degreff, & C. Häuser) 158–172 (2010).
Schoonhoven, L. M., van Loon, J. J. A. & Dicke, M. Insect-Plant Biology. (Oxford University Press, 2010).
deWaard, J. R., Ivanova, N. V., Hajibabaei, M. & Hebert, P. D. N. in Methods in Molecular Biology: Environmental Genetics (ed C. Martin) 275–293 (Humana Press, 2008).
Ivanova, N. V., deWaard, J. R. & Hebert, P. D. N. An inexpensive, automation-friendly protocol for recovering high-quality DNA. Mol. Ecol. Notes6, 998–1002 (2006).
Hebert, P. D. N., Cywinska, A., Ball, S. L. & deWaard, J. R. Biological identifications through DNA barcodes. Proc. R. Soc. B Biol. Sci. 313–321 (2003).
Kimura, M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evolut., 111–120 (1980).
Schmidt, S., Schmid-Egger, C., Morinière, J., Haszprunar, G. & Hebert, P. D. N. DNA barcoding largely supports 250 years of classical taxonomy: identifications for Central European bees (Hymenoptera, Apoideapartim). Mol. Ecol. Resour. 15, 985–1000 (2015).
Pentinsaari, M., Hebert, P. D. N. & Mutanen, M. Barcoding Beetles: A regional survey of 1872 species reveals high identification success and unusually deep interspecific divergences. PLoS ONE9, pdf_724, https://doi.org/10.1371/journal.pone.0108651 (2014).
Paradis, E., Claude, J. & Strimmer, K. APE; analyses of phylogenetics and evolution. Bioinformatics, 289–290 (2014).
Pagès, H., Aboyoun, P., Gentleman, R. & DebRoy, S. Biostrings: Efficient Manipulation of Biological Strings. R Package Version 2.48.0. (2018).
R, C. T. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, Vienna). https://www.R-project.org/. (2017).
Oksanen, J. et al. Vegan: Community Ecology Package. R Package Version 2.5-4. https://CRAN.R-project.org/package=vegan (2019).
Hsieh, T. C., Ma, K. H. & Cho, A. iNEXT: iNterpolation and EXTrapolation for Species Diversity. R Package Version 2.0.19. https://chao.stat.nthu.edu.tw/blog/software-download/. (2019).
Smith, M. A., Fernandez-Triana, J., Roughley, E. & Hebert, P. D. N. DNA barcode accumulation curves for understudied taxa and areas. Mol. Ecol. Resour. 9, 208–216. https://doi.org/10.1111/j.1755-0998.2009.02646.x (2009).
Legendre, P. & De Cáceres, M. Beta diversity as the variance of community data: Dissimilarity coefficients and partitioning. Ecol. Lett. 16, 951–963. https://doi.org/10.1111/ele.12141 (2013).
McArdle, B. H. & Anderson, M. J. Fitting multivariate models to community data: A comment on distance-based redundancy analysis. Ecology 82, 290–297. https://doi.org/10.1890/0012-9658(2001)082[0290:FMMTCD]2.0.CO;2 (2001).
Chao, A., Chazdon, R., Colwell, R. & Shen, T.-J. Abundance-based similarity indices and their estimation when there are unseen species in samples. Biometrics 62, 361–371. https://doi.org/10.1111/j.1541-0420.2005.00489.x (2006).
Paradis, E. Pegas: An R package for population genetics with an integrated-modular approach. Bioinformatics 419–420 (2010).
Tajima, F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123, 585–595 (1989).
Schliep, K. P. Phangorn: Phylogenetic analysis in R. Bioinformatics 27, 592–593 (2011).
Miettinen, J., Shi, C. & Liew, S. C. Deforestation rates in insular Southeast Asia between 2000 and 2010. Glob. Change Biol. 17, 2261–2270. https://doi.org/10.1111/j.1365-2486.2011.02398.x (2011).
Turubanova, S., Potapov, P. V., Tyukavina, A. & Hansen, M. C. Ongoing primary forest loss in Brazil, Democratic Republic of the Congo, and Indonesia. Environ. Res. Lett. 13, 074028. https://doi.org/10.1088/1748-9326/aacd1c (2018).
Longino, J. T. & Branstetter, M. G. The truncated bell: An enigmatic but pervasive elevational diversity pattern in Middle American ants. Ecography 42, 272–283. https://doi.org/10.1111/ecog.03871 (2019).
Smith, M. A., Hallwachs, W. & Janzen, D. H. Diversity and phylogenetic community structure of ants along a Costa Rican elevational gradient. Ecography 37, 720–731. https://doi.org/10.1111/j.1600-0587.2013.00631.x (2014).
Floren, A., Biun, A. & Linsenmair, K. E. Arboreal ants as key predators in tropical lowland rainforest trees. Oecologia 131, 137–144. https://doi.org/10.1007/s00442-002-0874-z (2002).
Supriya, K., Moreau, C. S., Sam, K. & Price, T. D. Analysis of tropical and temperate elevational gradients in arthropod abundance. Front. Biogeogr. 11, 1–11, https://doi.org/10.21425/F5FBG43104 (2019).
Kress, W. J., García-Robledo, C., Uriarte, M. & Erickson, D. L. DNA barcodes for ecology, evolution, and conservation. Trends Ecol. Evol. 30, 25–35. https://doi.org/10.1016/j.tree.2014.10.008 (2015).
Dirzo, R. et al. Defaunation in the Anthropocene. Science 345, 401–406. https://doi.org/10.1126/science.1251817 (2014).
Guo, Q. et al. Global variation in elevational diversity patterns. Sci. Rep. 3, 3007. https://doi.org/10.1038/srep03007 (2013).
Bertuzzo, E. et al. Geomorphic controls on elevational gradients of species richness. Proc. Natl. Acad. Sci. 113, 1737–1742. https://doi.org/10.1073/pnas.1518922113 (2016).
Floren, A. & Schmidl, J. Canopy Arthropod Research in Central Europe—Basic and Applied Studies from the High Frontier. (Bioform, 2008).
Hodkinson, I. D. & Casson, D. A lesser predilection for bugs: Hemiptera (Insecta) diversity in tropical rain forests. Biol. J. Lin. Soc. 43, 101–109 (1991).
Guerrero-Jiménez, C. J. et al. Pattern of genetic differentiation of an incipient speciation process: The case of the high Andean killifish Orestias. PLoS ONE 12, e0170380. https://doi.org/10.1371/journal.pone.0170380 (2017).
Merckx, V. S. F. T. et al. Evolution of endemism on a young tropical mountain. Nature524, 347–350, https://doi.org/10.1038/nature14949. https://www.nature.com/nature/journal/v524/n7565/abs/nature14949.html#supplementary-information (2015).
Schluter, D. & Pennell, M. W. Speciation gradients and the distribution of biodiversity. Nature546, 48, https://doi.org/10.1038/nature22897. https://www.nature.com/articles/nature22897#supplementary-information (2017).
Source: Ecology - nature.com